41 research outputs found

    Zn⁺-O⁻ dual-spin surface states formation by modification of ZnO nanoparticles with diboron compounds

    Get PDF
    ZnO semiconductor oxides are versatile functional materials that are used in photoelectronics, catalysis, sensing, etc. The Zn⁺–O⁻ surface electronic states of semiconductor oxides were formed on the ZnO surface by Zn 4s and O 2p orbital coupling with the diboron compound’s B 2p orbitals. The formation of spin-coupled surface states was based on the spin–orbit interaction on the interface, which has not been reported before. This shows that the semiconductor oxide’s spin surface states can be modulated by regulating surface orbital energy. The Zn⁺–O⁻ surface electronic states were confirmed by electron spin resonance results, which may help in expanding the fundamental research on spintronics modulation and quantum transport

    Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition

    Get PDF
    Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.This work was supported by funds from the National Natural Science Foundation of China (31970641); the State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Center for Life Sciences; the USDA National Institute of Food and Agriculture, Hatch project 3808 to W.W.; the National Natural Science Foundation of China (31970283); Beijing Nova Program of Science and Technology (Z191100001119027); Capital Normal University and State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, to M.Z.; the European Commission Marie Curie-IEF reSGulating-702473 to E.G.B.; Natural Science Foundation of Fujian Province (2020J01546) to J.L.; Knut and Alice Wallenberg Foundation and Swedish Research Council VR to P.V.B.; International Postdoctoral Exchange Fellowship Program and Postdoctoral Fellowship of Center for Life Sciences, and National Natural Science Foundation of China (3220050423) to Z.X.; and the Postdoctoral Fellowship of Center for Life Sciences to S.Z., Y.L. and C.C.Peer reviewe

    Identification and Characterization of a Leucine-Rich Repeat Kinase 2 (LRRK2) Consensus Phosphorylation Motif

    Get PDF
    Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways

    The Asian rock-dwelling antlions Gatzara Navás, 1915 and Nepsalus Navás, 1914 (Neuroptera: Myrmeleontidae): new advancements in systematics, biogeography and life history

    No full text
    The antlion genera Gatzara and Nepsalus (Myrmeleontidae: Dendroleontinae) inhabit mountain forests and are characterised by camouflaging larvae. Both genera remain poorly known despite recent findings on systematics and distribution. We report the discovery of new specimens and the previously unknown larvae of the rare species Gatzara jubilaea Navás, 1915, Nepsalus insolitus (Walker, 1860) and N. decorosus (Yang, 1988). These provide new evidence regarding the affinities of these species, and updated knowledge of the distribution, larval morphology and biology. Moreover, a new species of Nepsalus, N. maclachlani Badano, Zheng & Liu, sp. nov. is described from Sri Lanka based on historical museum collections. The discovery of the immature stages of Gatzara shows that the larvae of this genus share the same specialised ecological characteristics and habits as those of Nepsalus but are less morphologically derived. We also reconstruct a molecular phylogeny of this lineage, estimating the divergence time and biogeographical history by adding the new samples. The evolution of the Gatzara + Nepsalus lineage is associated with two major mountain ranges on the southern Tibetan Plateau, i.e. the Himalayas and the Hengduan Mountains

    Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry

    No full text
    The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP–CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS–WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization
    corecore