26 research outputs found

    What Should Data Science Education Do with Large Language Models?

    Full text link
    The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory

    Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?

    Get PDF
    Fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS) are the two main cellular components of the synovium. It has been widely reported that FLS and MLS play essential roles in the joint pathology of rheumatoid arthritis (RA). Although various studies have analyzed both human and animal tissues and have shown that both cell types are involved in different stages of RA, ontology, and specific functions of both cell populations and their interactions are not well understood. In this review, we will summarize recent research on FLS and MLS in RA and focus on the development and function of two predominant synovial cell types. In addition, we will discuss the communication between FLS or MLS and highlight potential treatments for RA that involve synoviocytes

    Ontogeny of Synovial Macrophages and the Roles of Synovial Macrophages From Different Origins in Arthritis

    Get PDF
    The ontogeny of macrophages in most organ/tissues in human body has been proven. Due to the limited number and inaccessibility of synovial macrophages (SM), the origin of SM has not been fully illuminated. The objective of this study was designed to investigate the ontogeny of SM and to evaluate the role of SM from different origins in arthritis. Two origins of SM, embryonic SM (ESM) and bone marrow SM (BMSM) were identified in Cx3cr1-EGFP mice, CCR2−/− mice and bone marrow (BM) chimera model by using a stringent sorting strategy. The cellular features, including dynamic total cell number, in situ proliferation, phagocytosis and expressions of pro-inflammatory and anti-inflammatory genes, of ESM and BMSM were compared. In addition, ESM and BMSM showed different expression patterns in Rheumatoid Arthritis (RA) patients' synovium and during the developmental process of collagen-induced arthritis (CIA) mice. Taken together, these results demonstrated that the SM at least has two origins, ESM and BMSM. The different cellular property and dynamic expression patterns in RA patients/CIA mice highlight the notion that ESM and BMSM might play different role in arthritis

    The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6′-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases

    Get PDF
    The plant extract “total glucosides of peony” (TGP) constitutes a mixture of glycosides that is isolated from the roots of the well-known traditional Chinese herb Paeonia lactiflora Pall. Paeoniflorin (Pae) is the most abundant component and the main biologically active ingredient of TGP. Pharmacologically, Pae exhibits powerful anti-inflammatory and immune regulatory effects in some animal models of autoimmune diseases including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). Recently, we modified Pae with an addition of benzene sulfonate to achieve better bioavailability and higher anti-inflammatory immune regulatory effects. This review summarizes the pharmacological activities of Pae and the novel anti-inflammatory and immunomodulatory agent Paeoniflorin-6′-O-benzenesulfonate (CP-25) in various chronic inflammatory and autoimmune disorders. The regulatory effects of Pae and CP-25 make them promising agents for other related diseases, which require extensive investigation in the future

    Multi-Initialized States Referred Work Parameter Calibration for Gaze Tracking Human-Robot Interaction

    No full text
    In order to adaptively calibrate the work parameters in the infrared-TV based eye gaze tracking Human-Robot Interaction (HRI) system, a kind of gaze direction sensing model has been provided for detecting the eye gaze identified parameters. We paid more attention to situations where the user's head was in a different position to the interaction interface. Furthermore, the algorithm for automatically correcting work parameters of the system has also been put up by defining certain initial reference system states and analysing the historical information of the interaction between a user and the system. Moreover, considering some application cases and factors, and relying on minimum error rate Bayesian decision-making theory, a mechanism for identifying system state and adaptively calibrating parameters has been proposed. Finally, some experiments have been done with the established system and the results suggest that the proposed mechanism and algorithm can identify the system work state in multi-situations, and can automatically correct the work parameters to meet the demands of a gaze tracking HRI system

    The Effects of MicroRNAs on Key Signalling Pathways and Epigenetic Modification in Fibroblast-Like Synoviocytes of Rheumatoid Arthritis

    No full text
    MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level via direct binding to the 3′-untranslated region (UTR) of target mRNAs. Emerging evidence shows that miRNAs play crucial roles in controlling and modulating immune system-related diseases. This review focuses on the role played by miRNAs in fibroblast-like synoviocytes (FLS), which is a key cellular component within synovia, during the establishment and maintenance of rheumatoid arthritis (RA), a systemic inflammatory autoimmune disease. It also provides an overview and classification of known functional miRNAs in RA FLS and summarizes the potential uses of these small molecules in RA diagnosis and treatment

    Synovial Macrophages in Rheumatoid Arthritis: The Past, Present, and Future

    No full text
    The ontogeny of macrophages in most organs has already been established. Owing to the limited number and inaccessibility of synovial macrophages (SMs), the origin of SMs has not been fully elucidated. Previous studies suggested that SMs have two major origins, namely, tissue-resident and monocyte-derived SMs. However, no systematic analysis to identify SM ontology in either physiological or pathological conditions has been available to date. In this review, we summarize relevant studies on the two main origins of SMs in rheumatoid arthritis (RA) and forecast the future research directions for this field. Furthermore, we discuss the current state of RA therapy that is based on targeting different SM subsets
    corecore