108 research outputs found

    Insulin-like growth factor I promotes cord blood T cell maturation through monocytes and inhibits their apoptosis in part through interleukin-6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The functional immaturity of T cells contributes to the susceptibility of neonates to infections and the less severe graft-versus-host disease associated with cord blood (CB) transplantation. We have previously reported that insulin-like growth factor – I (IGF-I) promotes the phytohaemagglutinin (PHA)-induced CB T cell maturation and inhibits their apoptosis in mononuclear cell (MC) culture. We hypothesized that the effects of IGF-I may be mediated by accessory cells and soluble factors.</p> <p>Results</p> <p>This study showed that the kinetics of PHA-induced maturation in purified CD3+ T cell was delayed compared to that in CBMC. The addition of autologous CD14+ monocytes increased T cell maturation and potentiated the effect of IGF-I. The addition of IL-6 had no effect on CB T cell maturation but it reduced PHA-induced apoptosis significantly. We further demonstrated that the neutralisation of IL-6 in CBMC culture partially abrogated the anti-apoptotic effect of IGF-1 on T cells. The anti-apoptotic effect of IL-6 was not mediated via the reduction of Fas expression in T cell subsets.</p> <p>Conclusion</p> <p>Our results suggested that the maturation effect of IGF-1 is partially mediated by monocytes and the anti-apoptotic effect in part via IL-6. Further investigation is needed to explore the therapeutic use of IGF-I in enhancing neonatal immunity.</p

    Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi 1/2TiO3 ceramics through cobalt substitution

    Get PDF
    Co-ion (5 mol %) substitution in Na1/2Bi1/2TiO 3 (NBT) host lattice and their effects on the structural, ferroelectric and dielectric behavior has been investigated thoroughly in this present study. The substituted Co-ion at Ti-site acts an acceptor type doping and hardens (i.e., increase in coercivity) the system without any noticeable change in the remanent polarization values. However, the intermediate antiferroelectric (AFE) ordering which exists between 200 C-280 C in NBT system has been suppressed due to Co-ion substitution, which is an interesting feature for device applications

    TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells

    Get PDF
    Although diverse functions of different toll-like receptors (TLR) on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4(hi)CD25(+) regulatory T cells from naive CD4(+)CD25(-) T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4(hi)CD25(+) regulatory T cells. It was found that induced CD4(hi)CD25(+) regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4(hi)CD25(+) regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4(hi)CD25(+) regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4(hi)CD25(+) regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4(hi)CD25(+) regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.published_or_final_versio

    The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a γδ T cell population in humanized mice

    Get PDF
    As shown in humanized mice, a population of Vγ9Vδ2 T cells can reduce the severity and mortality of disease caused by infection with human and avian influenza viruses

    Type I and III Interferon Productions Are Impaired in X-Linked Agammaglobulinemia Patients Toward Poliovirus but Not Influenza Virus

    Get PDF
    BackgroundX-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by Bruton’s tyrosine kinase (BTK) mutation. Patients are susceptible to severe enterovirus infections. The underlying mechanism remains unknown. BTK is involved in toll-like receptors pathway, which initiates antiviral responses including interferon (IFN) productions.ObjectiveTo demonstrate type I and III IFN productions in dendritic cells of XLA patients is decreased in response to oral poliovirus vaccine (OPV) but not H1N1 virus.MethodsMonocyte-derived dendritic cells (MoDCs) were derived from nine XLA patients aged 22–32 years old and 23 buffy coats from Hong Kong Red Cross blood donors. LFM-A13 was used to inhibit BTK. OPV Sabin type 1 and H1N1 influenza virus were used to stimulate MoDCs with RPMI as mock stimulation. The antiviral cytokine productions and phenotypic maturation of MoDCs were determined 24 h post-stimulation. OPV RNA was determined at 0, 6, 12, and 24 h post-stimulation.ResultsUpon OPV stimulation, IFN-α2, IFN-β, and IFN-λ1 productions in MoDCs from XLA patients and BTK-inhibited MoDCs of healthy controls were significantly lower than that from healthy controls. Whereas upon H1N1 stimulation, the IFN-α2, IFN-β, and IFN-λ1 productions were similar in MoDCs from XLA patients, BTK-inhibited MoDCs of healthy controls and healthy controls. The mean fluorescent intensities (MFI) of CD83, CD86, and MHC-II in MoDCs from XLA patients in response to OPV was similar to that in response to mock stimulation, while the MFI of CD83, CD86, and MHC-II were significantly higher in response to H1N1 stimulation than that in response to mock stimulation. Whereas, the MFI of CD83, CD86, and MHC-II in MoDCs of healthy controls were significantly higher in response to both OPV and H1N1 stimulation compared to that in response to mock stimulation.ConclusionProduction of type I and III IFN in response to OPV was deficient in MoDCs from XLA patients, but was normal in response to H1N1 due to deficient BTK function. Moreover, phenotypic maturation of MoDCs from XLA patients was impaired in response to OPV but not to H1N1. These selective impairments may account for the unique susceptibility of XLA patients toward severe enterovirus infections

    Dendritic and T Cell Response to Influenza is Normal in the Patients with X-Linked Agammaglobulinemia

    Get PDF
    Introduction Influenza virus is a potential cause of severe disease in the immunocompromised. X-linked agammaglobu-linemia (XLA) is a primary immunodeficiency characterized by the lack of immunoglobulin, B cells, and plasma cells, secondary to mutation in Bruton’s tyrosine kinase (Btk) gene

    Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function

    Get PDF
    Background: Influenza virus is a major cause of respiratory disease worldwide and Streptococcus pneumoniae infection associated with influenza often leads to severe complications. Dendritic cells are key antigen presenting cells but its role in such co-infection is unclear.Methods: In this study, human monocyte derived-dentritic cells were either concurrently or successively challenged with the combination of live influenza virus and heat killed pneumococcus to mimic the viral pneumococcal infection. Dendritic cell viability, phenotypic maturation and cytokine production were then examined.Results: The challenge of influenza virus and pneumococcus altered dendritic cell functions dependent on the time interval between the successive challenge of influenza virus and pneumococcus, as well as the doses of pneumococcus. When dendritic cells were exposed to pneumococcus at 6 hr, but not 0 hr nor 24 hr after influenza virus infection, both virus and pneumococcus treated dendritic cells had greater cell apoptosis and expressed higher CD83 and CD86 than dendritic cells infected with influenza virus alone. Dendritic cells produced pro-inflammatory cytokines: TNF-α, IL-12 and IFN-γ synergistically to the successive viral and pneumococcal challenge. Whereas prior influenza virus infection suppressed the IL-10 response independent of the timing of the subsequent pneumococcal stimulation.Conclusions: Our results demonstrated that successive challenge of dendritic cells with influenza virus and pneumococcus resulted in synergistic up-regulation of pro-inflammatory cytokines with simultaneous down-regulation of anti-inflammatory cytokine, which may explain the immuno-pathogenesis of this important co-infection. © 2011 Wu et al; licensee BioMed Central Ltd.published_or_final_versio

    ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner

    Get PDF
    Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4. © 2013 zheng et al.published_or_final_versio
    corecore