5 research outputs found

    A chromosome-scale genome sequence of sudangrass (Sorghum sudanense) highlights the genome evolution and regulation of dhurrin biosynthesis

    Get PDF
    Sudangrass [ Sorghum sudanense (Piper) Stapf] is a hybrid between grain sorghum and its wild relative S. bicolor ssp. verticilliflorum and is grown as a forage crop due to its high biomass production and low dhurrin content compared to sorghum. In this study, we sequenced the sudangrass genome and showed that the assembled genome was 715.95 Mb with 35,243 protein-coding genes. Phylogenetic analysis with whole genome proteomes demonstrated that the sudangrass genome was more similar to US commercial sorghums than to its wild relatives and cultivated sorghums from Africa. We confirmed that at seedling stage, sudangrass accessions contained significantly lower dhurrin as measured by hydrocyanic acid potential (HCN-p) than cultivated sorghum accessions. Genome-wide association study identified a QTL most tightly associated with HCN-p and the linked SNPs were located in the 3’ UTR of Sobic.001G012300 which encodes CYP79A1, the enzyme that catalyzes the first step of dhurrin biosynthesis. As in other grasses such as maize and rice, we also found that copia/gypsy long terminal repeat retrotransposons were more abundant in cultivated than in wild sorghums, implying that crop domestication in the grasses was accompanied by increased copia/gypsy LTR retrotransposon insertions in the genomes

    DataSheet_1_Genome-wide association study of plant color in Sorghum bicolor.zip

    No full text
    IntroductionSorghum plant color is the leaf sheath/leaf color and is associated with seed color, tannin and phenol content, head blight disease incidence, and phytoalexin production.ResultsIn this study, we evaluated plant color of the sorghum mini core collection by scoring leaf sheath/leaf color at maturity as tan, red, or purple across three testing environments and performed genome-wide association mapping (GWAS) with 6,094,317 SNPs markers.Results and DiscussionEight loci, one each on chromosomes 1, 2, 4, and 6 and two on chromosomes 5 and 9, were mapped. All loci contained one to three candidate genes. In qPC5-1, Sobic.005G165632 and Sobic.005G165700 were located in the same linkage disequilibrium (LD) block. In qPC6, Sobic.006G149650 and Sobic.006G149700 were located in the different LD block. The single peak in qPC6 covered one gene, Sobic.006G149700, which was a senescence regulator. We found a loose correlation between the degree of linkage and tissue/organ expression of the underlying genes possibly related to the plant color phenotype. Allele analysis indicated that none of the linked SNPs can differentiate between red and purple accessions whereas all linked SNPs can differentiate tan from red/purple accessions. The candidate genes and SNP markers may facilitate the elucidation of plant color development as well as molecular plant breeding.</p

    Image_1_Genome-wide association study of plant color in Sorghum bicolor.jpeg

    No full text
    IntroductionSorghum plant color is the leaf sheath/leaf color and is associated with seed color, tannin and phenol content, head blight disease incidence, and phytoalexin production.ResultsIn this study, we evaluated plant color of the sorghum mini core collection by scoring leaf sheath/leaf color at maturity as tan, red, or purple across three testing environments and performed genome-wide association mapping (GWAS) with 6,094,317 SNPs markers.Results and DiscussionEight loci, one each on chromosomes 1, 2, 4, and 6 and two on chromosomes 5 and 9, were mapped. All loci contained one to three candidate genes. In qPC5-1, Sobic.005G165632 and Sobic.005G165700 were located in the same linkage disequilibrium (LD) block. In qPC6, Sobic.006G149650 and Sobic.006G149700 were located in the different LD block. The single peak in qPC6 covered one gene, Sobic.006G149700, which was a senescence regulator. We found a loose correlation between the degree of linkage and tissue/organ expression of the underlying genes possibly related to the plant color phenotype. Allele analysis indicated that none of the linked SNPs can differentiate between red and purple accessions whereas all linked SNPs can differentiate tan from red/purple accessions. The candidate genes and SNP markers may facilitate the elucidation of plant color development as well as molecular plant breeding.</p
    corecore