172 research outputs found
Numerical Research About the Internal Flow of Steam-jet Vacuum Pump: Evaluation of Turbulence Models and Determination of the Shock-mixing Layer
AbstractSteam-jet vacuum pump is widely used in a range of applications. This paper evaluated the performance of four well-known turbulence models for predicting and understanding the internal flow of a steam-jet vacuum pump first. With the help of a commercial computational fluid dynamics (CFD) code ANSYS-Fluent 6.3, the simulation results obtained from the concerned turbulence models were compared with experimental values, the k-omega-SST model was chosen as a tool model for carrying out numerical simulations. Then, based on the simulation results obtained from specific operating conditions, a method for locating the shock-mixing layer was put forward. The shape of the shock-mixing layer shows that the secondary steam does not mix with the primary steam immediately after being induced into the mixing chamber of the pump; actually, they maintain their independence till the shocking position instead. After the shock happens, the shock-mixing layer disappear, the two fluid in the pump begin to mix with each other and discharge to the next stage with almost the same state. Based on the shape of the shock-mixing layer and the supersonic region of the secondary steam, a detailed analysis for the flow duct of the secondary steam was carried out. It is found that the throat of the secondary steam flow duct plays a crucial role in maintaining a stable operating state and the length of the throat reflects the back pressure endurance for the pump
Distributed Semi-Supervised Sparse Statistical Inference
This paper is devoted to studying the semi-supervised sparse statistical
inference in a distributed setup. An efficient multi-round distributed debiased
estimator, which integrates both labeled and unlabelled data, is developed. We
will show that the additional unlabeled data helps to improve the statistical
rate of each round of iteration. Our approach offers tailored debiasing methods
for -estimation and generalized linear model according to the specific form
of the loss function. Our method also applies to a non-smooth loss like
absolute deviation loss. Furthermore, our algorithm is computationally
efficient since it requires only one estimation of a high-dimensional inverse
covariance matrix. We demonstrate the effectiveness of our method by presenting
simulation studies and real data applications that highlight the benefits of
incorporating unlabeled data.Comment: 41 pages, 4 figure
Therapeutic effects and mechanism of Atractylodis rhizoma in acute lung injury: Investigation based on an Integrated approach
Acute lung injury (ALI) is characterized by an excessive inflammatory response. Atractylodes lancea (Thunb.) DC. is a traditional chinese medicine with good anti-inflammatory activity that is commonly used clinically for the treatment of lung diseases in China; however, its mechanism of against ALI is unclear. We clarified the therapeutic effects of ethanol extract of Atractylodis rhizoma (EEAR) on lipopolysaccharide (LPS)-induced ALI by evaluation of hematoxylin-eosin (HE) stained sections, the lung wet/dry (W/D) ratio, and levels of inflammatory factors as indicators. We then characterized the chemical composition of EEAR by ultra-performance liquid chromatography and mass spectrometry (UPLC-MS) and screened the components and targets by network pharmacology to clarify the signaling pathways involved in the therapeutic effects of EEAR on ALI, and the results were validated by molecular docking simulation and Western blot (WB) analysis. Finally, we examined the metabolites in rat lung tissues by gas chromatography and mass spectrometry (GC-MS). The results showed that EEAR significantly reduced the W/D ratio, and tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) levels in the lungs of ALI model rats. Nineteen components of EEAR were identified and shown to act synergetically by regulating shared pathways such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathways. Ferulic acid, 4-methylumbelliferone, acetylatractylodinol, atractylenolide I, and atractylenolide III were predicted to bind well to PI3K, AKT and MAPK1, respectively, with binding energies < -5 kcal/mol, although only atractylenolide II bound with high affinity to MAPK1. EEAR significantly inhibited the phosphorylation of PI3K, AKT, p38, and ERK1/2, thus reducing protein expression. EEAR significantly modulated the expression of metabolites such as D-Galactose, D-Glucose, serine and D-Mannose. These metabolites were mainly concentrated in the galactose and amino acid metabolism pathways. In conclusion, EEAR alleviates ALI by inhibiting activation of the PI3K-AKT and MAPK signaling pathways and regulating galactose metabolism, providing a new direction for the development of drugs to treat ALI
Numerical modelling of micron particle inhalation in a realistic nasal airway with pediatric adenoid hypertrophy: A virtual comparison between pre- and postoperative models
Adenoid hypertrophy (AH) is an obstructive condition due to enlarged adenoids, causing mouth breathing, nasal blockage, snoring and/or restless sleep. While reliable diagnostic techniques, such as lateral soft tissue x-ray imaging or flexible nasopharyngoscopy, have been widely adopted in general practice, the actual impact of airway obstruction on nasal airflow and inhalation exposure to drug aerosols remains largely unknown. In this study, the effects of adenoid hypertrophy on airflow and micron particle inhalation exposure characteristics were analysed by virtually comparing pre- and postoperative models based on a realistic 3-year-old nasal airway with AH. More specifically, detailed comparison focused on anatomical shape variations, overall airflow and olfactory ventilation, associated particle deposition in overall and local regions were conducted. Our results indicate that the enlarged adenoid tissue can significantly alter the airflow fields. By virtually removing the enlarged tissue and restoring the airway, peak velocity and wall shear stress were restored, and olfactory ventilation was considerably improved (with a 16∼63% improvement in terms of local ventilation speed). Furthermore, particle deposition results revealed that nasal airway with AH exhibits higher particle filtration tendency with densely packed deposition hot spots being observed along the floor region and enlarged adenoid tissue area. While for the postoperative model, the deposition curve was shifted to the right. The local deposition efficiency results demonstrated that more particles with larger inertia can be delivered to the targeted affected area following Adenoidectomy (Adenoid Removal). Research findings are expected to provide scientific evidence for adenoidectomy planning and aerosol therapy following Adenoidectomy, which can substantially improve present clinical treatment outcomes.</p
- …