385 research outputs found

    Q2237+0305 source structure and dimensions from light curves simulation

    Full text link
    Assuming a two-component quasar structure model consisting of a central compact source and an extended outer feature, we produce microlensing simulations for a population of star-like objects in the lens galaxy. Such a model is a simplified version of that adopted to explain the brightness variations observed in Q0957 (Schild & Vakulik 2003). The microlensing light curves generated for a range of source parameters were compared to the light curves obtained in the framework of the OGLE program. With a large number of trials we built, in the domain of the source structure parameters, probability distributions to find "good" realizations of light curves. The values of the source parameters which provide the maximum of the joint probability distribution calculated for all the image components, have been accepted as estimates for the source structure parameters. The results favour the two-component model of the quasar brightness structure over a single compact central source model, and in general the simulations confirm the Schild-Vakulik model that previously described successfully the microlensing and other properties of Q0957. Adopting 3300 km/s for the transverse velocity of the source, the effective size of the central source was determined to be about 2x10^15 cm, and Epsilon =2 was obtained for the ratio of the integral luminosity of the outer feature to that of the central source.Comment: 7 pages, 4 figures, LaTe

    Magnetic field structure in single late-type giants: Beta Ceti in 2010 - 2012

    Full text link
    The data were obtained using two spectropolarimeters - Narval at the Bernard Lyot Telescope, Pic du Midi, France, and ESPaDOnS at CFHT, Hawaii. Thirty-eight circularly-polarized spectra have been collected in the period June 2010 - January 2012. The Least Square Deconvolution method was applied for extracting high signal-to-noise ratio line profiles, from which we measure the surface-averaged longitudinal magnetic field Bl. Chromospheric activity indicators CaII K, H_alpha, CaII IR (854.2 nm) and radial velocity were simultaneously measured and their variability was analysed together with the behavior of Bl. The Zeeman Doppler Imaging (ZDI) inversion technique was employed for reconstruction of the large-scale magnetic field and two magnetic maps of Beta Ceti are presented for two periods (June 2010 - December 2010 and June 2011 - January 2012). Bl remains of positive polarity for the whole observational period. The behavior of the line activity indicators is in good agreement with the Bl variations. The two ZDI maps show a mainly axisymmetric and poloidal magnetic topology and a simple surface magnetic field configuration dominated by a dipole. Little evolution is observed between the two maps, in spite of a 1 yr interval between both subsets. We also use state-of-the-art stellar evolution models to constrain the evolutionary status of Beta Ceti. We derive a mass of 3.5 M_sun and propose that this star is already in the central-helium burning phase. Taking into account all our results and the evolutionary status of the star, we suggest that dynamo action alone may not be eficient enough to account for the high magnetic activity of Beta Ceti. As an alternate option, we propose that it may be an Ap star descendant presently undergoing central helium-burning and still exhibiting a remnant of the Ap star magnetic field.Comment: 10 pages; 5 figures; 3 table

    Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    Full text link
    We present our first results on a new sample containing all single G,K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M_sun, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64 % of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.Comment: 4 pages, 3 figures, Proceedings IAU Symposium No. 302, 201
    • …
    corecore