70 research outputs found

    Criteria of interplanetary parameters causing intense magnetic storms (Dst less than -100nT)

    Get PDF
    Ten intense storms occurred during the 500 days of August 16, 1978 to December 28, 1979. From the analysis of ISEE-3 field and plasma data, it is found that the interplanetary cause of these storms are long-duration, large and negative IMF B sub Z events, associated with interplanetary duskward-electric fields greater than 5 mV/m. Because a one-to-one relationship was found between these interplanetary events and intense storms, it is suggested that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. These B sub Z events are found to occur in association with large amplitudes of the IMF magnitude within two days after the onset of either high-speed solar wind streams or of solar wind density enhancement events, giving important clues to their interplanetary origin. Some obvious possibilities will be discussed. The close proximity of B sub Z events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported, and thus the two interplanetary features corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity B sub Z events with the same criteria show that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity

    Bruce T. Tsurutani Receives 2009 John Adam Fleming Medal

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95226/1/eost17116.pd

    An intercomparison of plasma turbulence at three comets: Grigg-Skjellerup, Giacobini-Zinner, and Halley

    Get PDF
    We examine and intercompare the LF plasma wave turbulence at three comets: Grigg-Skjellerup (GS), Giacobini-Zinner (GZ), and Halley (H). All three have power spectral peaks at the local ion cyclotron frequency (the pump wave) at approx. 10(exp -2) Hz, and a power-law fall-off at higher frequencies that suggest the development of turbulent cascades. The power laws for the three comets are approximately f(exp -1.9), f(exp -1.9) and f(exp -2.1), respectively. However, other than the similarities in the power spectra, we find the magnetic field turbulence is considerably different at the three comets. Phase steepening is demonstrated to occur at the trailing edges of the GS waves. This is probably due to nonlinear steepening plus dispersion of the left-hand mode components. A coherency analysis of GZ turbulence indicates that it is primarily composed of righthanded mode components, i.e., the turbulence is 'whistlermode.' This too can be explained by nonlinear steepening plus dispersion of the magnetosonic waves. At the level of GS and GZ turbulence development when the spacecraft measurements were made, classical three-wave processes, such as the decay or modulation instabilities do not appear to play important roles. It is most likely that the nonlinear steepening and dispersive time scales are more rapid than three-wave processes, and the latter had not had time to develop for the relatively 'new' turbulence. The wave turbulence at Halley is linearly polarized. The exact nature of this turbulence is still not well understood at this time. Several possibilities are suggested, based on our preliminary analyses

    Dayside Ionospheric Superfountain

    Get PDF
    The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag

    NORAD Tracking of the February 2022 Starlink Satellites (and the Possible Immediate Loss of 32 Satellites)

    Full text link
    The North American Aerospace Defense Command (NORAD) tracking of the SpaceX Starlink satellite launch on February 03, 2022 is reviewed. Of the 49 Starlink satellites released into orbit, 38 were eventually lost. Thirty-two of the satellites were never tracked by NORAD. There have been three articles written proposing physical mechanisms to explain the satellite losses. It is argued that none of the proposed mechanisms can explain the immediate loss of 32 of the 49 satellites. The non-availability of telemetry data from the lost satellites has hindered the search for a physical mechanism to explain the density increase observed in a short time interval.Comment: 23 pages, 5 figures, 1 table. arXiv admin note: text overlap with arXiv:2210.0790

    Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    Get PDF
    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher)

    Thermosphereâ Ionosphere Modeling With Forecastable Inputs: Case Study of the June 2012 Highâ Speed Stream Geomagnetic Storm

    Full text link
    Forecasting conditions in the thermosphere and ionosphere is a key outcome expected from space weather research. In this work, we perform numerical simulations using the firstâ principles models Global Ionosphereâ Thermosphere Model (GITM) and Thermosphereâ Ionosphere Electrodynamics General Circulation Model (TIEâ GCM) to address the reliability of thermosphericâ ionospheric forecasts. When considering forecasts applicable to periods of geomagnetic activity, careful consideration is required of model inputs, which largely determine how the models will simulate disturbed conditions. We adopt an approach to drive the models with solar wind parameters and the 10.7 cm solar radio flux. This aligns our investigation with recent research and operational activities to forecast solar wind conditions on the Earth a few days in advance. In this work, we examine a weak geomagnetic storm, the June 2012 highâ speedâ stream event, for which we drive GITM and TIEâ GCM with observed solar wind and F10.7 values. We find general agreement between the simulations and observationâ based Global Ionospheric Maps of the total electron content (TEC) response. However, overestimated TEC response is found in the middle to low latitudinal region of the American sector and surrounding areas for both GITM and TIEâ GCM during similar time periods. By conducting numerical modeling experiments and comparing the modeling results with observational data, we find that the overestimated TEC response can be almost equally attributed to the solar wind driving and F10.7 driving during the June 2012 event. We conclude that the accuracy of the highâ latitude electric field and the solar irradiance is crucial to reproduce the TEC response in forecastableâ mode modeling.Key PointsForecastable global thermosphereâ ionosphere modeling is carried out for a weak geomagnetic stormThe modeled daytime middleâ to lowâ latitude TEC response is primarily driven by the solar wind condition on the first day of the stormOn later days of the storm the solar irradiance plays a comparable role as the solar wind in determining the modeled daytime TEC responsePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153689/1/swe20952_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153689/2/swe20952.pd

    An Unexplained 10 Degree - 40 Degree Shift in the Location of Some Diverse Neutral Atom Data at 1 AU

    Full text link
    Four different data sets pertaining to the neutral atom environment at 1 AU are presented and discussed. These data sets include neutral solar wind and interstellar neutral atom data from IMAGE/LENA, energetic hydrogen atom data from SOHO/HSTOF and plasma wave data from the magnetometer on ISEE-3. Surprisingly, these data sets are centered between 262 degrees and 292 degrees ecliptic longitude, about 10 degrees - 40 degrees from the upstream interstellar neutral flow direction at 254 degrees resulting from the motion of the Sun relative to the local interstellar cloud. Some possible explanations for this offset, none of which is completely satisfactory, are discussed.Comment: 6 pages, 6 figures, 2 color peer-reviewed paper, in press, COSPAR/WS
    corecore