495 research outputs found

    A Chandra View of the Normal SO Galaxy NGC 1332: II: Solar Abundances in the Hot Gas and Implications for SN Enrichment

    Full text link
    We present spectral analysis of the diffuse emission in the normal, isolated, moderate-Lx S0 NGC 1332, constraining both the temperature profile and the metal abundances in the ISM. The characteristics of the point source population and the gravitating matter are discussed in two companion papers. The diffuse emission comprises hot gas, with an ~isothermal temperature profile (~0.5 keV), and emission from unresolved point-sources. In contrast with the cool cores of many groups and clusters, we find a small central temperature peak. We obtain emission-weighted abundance contraints within 20 kpc for several key elements: Fe, O, Ne, Mg and Si. The measured iron abundance (Z_Fe=1.1 in solar units; >0.53 at 99% confidence) strongly excludes the very sub-solar values often historically reported for early-type galaxies but agrees with recent observations of brighter galaxies and groups. The abundance ratios, with respect to Fe, of the other elements were also found to be ~solar, although Z_o/Z_Fe was significantly lower (<0.4). Such a low O abundance is not predicted by simple models of ISM enrichment by Type Ia and Type II supernovae, and may indicate a significant contribution from primordial hypernovae. Revisiting Chandra observations of the moderate-Lx, isolated elliptical NGC 720, we obtain similar abundance constraints. Adopting standard SNIa and SNII metal yields, our abundance ratio constraints imply 73+/-5% and 85+/-6% of the Fe enrichment in NGC 1332 and NGC 720, respectively, arises from SNIa. Although these results are sensitive to the considerable systematic uncertainty in the SNe yields, they are in good agreement with observations of more massive systems. These two moderate-Lx early-type galaxies reveal a consistent pattern of metal enrichment from cluster scales to moderate Lx/Lb galaxies. (abridged)Comment: 12 pages, 4 figures, accepted for publication in ApJ. Minor changes to match published versio

    Discovery of Bright Variable X-ray Sources in NGC 1569 with Chandra

    Full text link
    From the analysis of a ~100 ks Chandra observation of the dwarf starburst galaxy NGC 1569, we have found that the X-ray point sources, CXOU 043048.1+645050 and CXOU 043048.6+645058, showed significant time variability. During this observation, the X-ray flux of CXOU 043048.1+645050 increased by 10 times in only 2 x 10^4 s. Since the spectrum in its bright phase was fitted with a disk blackbody model with kT_in ~0.43 keV and the bolometric luminosity is L_bol ~10^38 ergs s^-1, this source is an X-ray binary with a stellar mass black-hole. Since the spectrum in its faint phase was also fitted with a disk blackbody model, the time variability can be explained by a change of the accretion rate onto the black hole. The other variable source, CXOU 043048.6+645058, had a flat spectrum with a photon index of ~1.6. This source may be an X-ray binary with an X-ray luminosity of several x 10^37 ergs s^-1. In addition, three other weak sources showed possible time variability. Taking all of the variability into account may suggest an abundant population of compact X-ray sources in NGC 1569.Comment: 15 pages including 4 Postscript figures; accepted for publication in ApJ

    Peculiar Chemical Abundances in the Starburst Galaxy M82 and Hypernova Nucleosynthesis

    Get PDF
    X-ray observations have shown that the chemical abundance in the starburst galaxy M82 is quite rich in Si and S compared with oxygen. Such an abundance pattern cannot be explained with any combination of conventional Type I and II supernova yields. Also the energy to heavy element mass ratio of the observed hot plasma is much higher than the value resulted from normal supernovae. We calculate explosive nucleosynthesis in core-collapse hypernovae and show that the abundance pattern and the large ratio between the energy and the heavy element mass can be explained with the hypernova nucleosynthesis. Such hypernova explosions are expected to occur for stars more massive than >~ 20-25 Msun, and likely dominating the starburst, because the age after the starburst in M82 is estimated to be as short as ~ 10^6 - 10^7 yr. We also investigate pair-instability supernovae (~ 150-300 Msun) and conclude that the energy to heavy element mass ratio in these supernovae is too small to explain the observation.Comment: 11 pages, 6 figures, To appear in the Astrophysical Journal 578, 200

    An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance

    Get PDF
    (abbreviated) We have undertaken an X-ray survey of a far-infrared flux limited sample of seven nearby edge-on starburst galaxies. Here, we examine the two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent manner, taking account of the spatial distribution of the X-ray emission in choosing our spectral models. There is significant X-ray absorption in the disk of NGC 253. When this is accounted for we find that multi-temperature thermal plasma models with significant underlying soft X-ray absorption are more consistent with the imaging data than single-temperature models with highly subsolar abundances or models with minimal absorption and non-equilibrium thermal ionization conditions. Our models do not require absolute abundances that are inconsistent with solar values or unusually supersolar ratios of the alpha-burning elements with respect to Fe (as claimed previously). We conclude that with current data, the technique of measuring abundances in starburst galaxies via X-ray spectral modeling is highly uncertain. Based on the point-like nature of much of the X-ray emission in the PSPC hard-band image of NGC 253, we suggest that a significant fraction of the ``extended'' X-ray emission in the 3-10 keV band seen along the disk of the galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources in the disk, as opposed to purely diffuse, hot gas. This could explain the low Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal

    Conformations of closed DNA

    Full text link
    We examine the conformations of a model for a short segment of closed DNA. The molecule is represented as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking number. We obtain analytic expressions leading to the spatial configuration of a family of solutions representing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations is assessed, along with the effects of fluctuations on the free energy of the various configurations.Comment: 39 pages in REVTEX with 14 eps figures. Submitted to Phys. Rev. E. This manuscript updates, expands and revises, to a considerable extent, a previously posted manuscript, entitled "Conformations of Circular DNA," which appeared as cond-mat/970104

    Formation of a Massive Black Hole at the Center of the Superbubble in M82

    Get PDF
    We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations of the central region (about 450 pc in radius) of M82 with the Nobeyama Millimeter Array, and have successfully imaged a molecular superbubble and spurs. The center of the superbubble is clearly shifted from the nucleus by 140 pc. This position is close to that of the massive black hole (BH) of >460 Mo and the 2.2 micron secondary peak (a luminous supergiant dominated cluster), which strongly suggests that these objects may be related to the formation of the superbubble. Consideration of star formation in the cluster based on the infrared data indicates that (1) energy release from supernovae can account for the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs available for building-up the massive BH may be much higher than 460 Mo, and (3) it is possible to form the middle-mass BH of 100-1000 Mo within the timescale of the superbubble. We suggest that the massive BH was produced and is growing in the intense starburst region.Comment: 9 pages, 3 figures, to appear in ApJ Lette

    Conformations of Linear DNA

    Full text link
    We examine the conformations of a model for under- and overwound DNA. The molecule is represented as a cylindrically symmetric elastic string subjected to a stretching force and to constraints corresponding to a specification of the link number. We derive a fundamental relation between the Euler angles that describe the curve and the topological linking number. Analytical expressions for the spatial configurations of the molecule in the infinite- length limit were obtained. A unique configuraion minimizes the energy for a given set of physical conditions. An elastic model incorporating thermal fluctuations provides excellent agreement with experimental results on the plectonemic transition.Comment: 5 pages, RevTeX; 6 postscript figure

    The Hot and Energetic Universe: Astrophysics of feedback in local AGN

    Full text link
    Understanding the astrophysics of feedback in active galactic nuclei (AGN) is key to understanding the growth and co-evolution of supermassive black holes and galaxies. AGN-driven winds/outflows are potentially the most effective way of transporting energy and momentum from the nuclear scales to the host galaxy, quenching star formation by sweeping away the gas reservoir. Key questions in this field are: 1) how do accretion disks around black holes launch winds/outflows, and how much energy do these carry? 2) How are the energy and metals accelerated in winds/outflows transferred and deposited into the circumgalactic medium? X-ray observations are a unique way to address these questions because they probe the phase of the outflows which carries most of the kinetic energy. We show how a high throughput, high spectral resolution instrument like the X-ray Integral Field Unit (X-IFU) on Athena+ will allow us to address these questions by determining the physical parameters (ionization state, density, temperature, abundances, velocities, geometry, etc.) of the outflows on a dynamical time-scale, in a broad sample of nearby bright AGN. The X-IFU will also allow direct spectral imaging of the impact of these winds on the host galaxy for local AGN, forming a template for understanding AGN at higher redshifts where wind shocks cannot be resolved.Comment: Supporting paper for the science theme "The Hot and Energetic Universe" to be implemented by the Athena+ X-ray observatory (http://www.the-athena-x-ray-observatory.eu). 10 pages, 6 figure
    • …
    corecore