51 research outputs found

    Gamma Ray and Radon Anomalies in Northern Taiwan as a Possible Preearthquake Indicator around the Plate Boundary

    Get PDF
    Taiwan is tectonically situated in an oblique collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EP). Continuous observations of gamma rays at the Yangmingshan (YMSG) station and soil radon at the Tapingti (TPT) station were recorded in the volcanic area and around a major fault zone, respectively, in Taiwan for seismic studies. A number of anomalous high gamma ray counts and radon concentrations at certain times were found. It is noted that significant increases of soil radon concentrations were observed and followed by the increase in gamma rays a few days to a few weeks before earthquakes that occurred in northeastern Taiwan. Earthquakes such as these are usually related to the subduction of the PSP beneath the EP to the north along the subduction zone in northern Taiwan (e.g., ML = 6 4, April 20, 2015). It is suggested that the preseismic activity may be associated with slow geodynamic processes at the subduction interface, leading to the PSP movement triggering radon enhancements at the TPT station. Furthermore, the further movement of the PSP might be blocked by the EP, with the accumulated elastic stress resulting in the increase of gamma rays due to the increase in porosity and fractures below the YMSG station. The continuous monitoring of the multiple parameters can improve the understanding of the relationship between the observed radon and gamma ray variations and the regional crustal stress/strain in north and northeastern Taiwan

    Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan

    Full text link
    Taiwan is tectonically situated in a terrain resulting from the oblique collision between the Philippine Sea plate and the continental margin of the Asiatic plate, with a continuous stress causing the density of strong-moderate earthquakes and regional active faults. The continuous time series of soil radon for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. Earthquake prediction is not still operative but these correlations should be added to the literature about seismo-geochemical transients associated to strong earthquakes. Rain-pore pressure related variations, crustal weakness at the studied faults system is consistent with the simultaneous radon anomalies observed. During the observations, a significant increase of soil radon concentrations was observed at Chunglun-T1 (CL-T1), Hsinhua (HH), Pingtung (PT), and Chihshan (CS) stations approximately two weeks before the Meinong earthquake (ML = 6.6, 6 February 2016) in Southern Taiwan. The precursory changes in a multi-stations array may reflect the preparation stage of a large earthquake. Precursory signals are observed simultaneously and it can apply certain algorithms the approximate location and magnitude of the impending earthquake

    Estimating Flow and Recharge Rates of Groundwater in Western Taiwan Using Radiocarbon and Tritium

    No full text
    The Choushuichi alluvial-fan delta is the largest groundwater system in Taiwan. The coastal area of this fan delta has recently suffered severe land subsidence and sea-water intrusion due to overpumping of groundwater. To study the hydrogeological character of proper water-resource management, an intensive program of geological and water monitoring through well drilling and sampling has been undertaken. At present, radiocarbon dating and/or tritium analysis for samples from >70 boreholes has been completed. The clearly defined position of "bomb-tritium front" allows the groundwater flow and recharge rates of the confined aquifer to be calculated with confidence at <10 m yr-1 and 9.0 x 10^8 m3 yr-1, respectively. The flow velocities of the confined aquifer have also accelerated remarkably due to much pumping during the last decades.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    National Taiwan University Radiocarbon Dates III

    No full text
    This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    • …
    corecore