364 research outputs found

    A systematic review and meta-analysis of guided tissue regeneration/osseous grafting for the treatment of Class II furcation defects

    Get PDF
    AbstractBackground/purposeThe purpose of this article was to conduct a systematic review of the clinical evidence on the efficacy of guide tissue regeneration (GTR) with/without osseous grafting (OG) in treating periodontal furcation Class II defects.Materials and methodsReports from randomized controlled clinical trials, with at least 6 months follow-up, comparing open flap debridement (OFD); GTR, and GTR + OG were located from various sources. Sources included the electronic databases of Cochrane Oral Health Group specialist trials register, MEDLINE, and PubMed; in addition, journal archives were hand-searched. Trials up to and including March 2012 were included. Using the PICO (Patient or Problem, Intervention, Comparison, and Outcome) question format, data from eligible articles were extracted and meta-analyzed. The outcomes measures were furcation closure rate, vertical/horizontal bone fill (re-entry), and vertical/horizontal attachment level gain.ResultsThe meta-analysis showed that the GTR and GTR + OG groups obtained greater furcation closure rate, vertical/horizontal bone fill, and vertical/horizontal attachment level gain than the OFD group in mandibular molars. The GTR group obtained greater vertical/horizontal bone fill and vertical attachment level gain than the OFD group in maxillary molars. The GTR + OG group achieved better clinical outcomes than the GTR group did in all the comparing outcomes in mandibular molars.ConclusionGTR technique seemed to be more effective than OFD for resolving Class II periodontal furcation defects, and the GTR + OG technique showed even better clinical results. The outcomes were better for mandibular molars than for maxillary molars

    Current Status of the Immunomodulation and Immunomediated Therapeutic Strategies for Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and CD4+ T cells form the core immunopathogenic cascade leading to chronic inflammation. Traditionally, Th1 cells (interferon-γ-producing CD4+ T cells) driven by interleukin 12 (IL12) were considered to be the encephalitogenic T cells in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Currently, Th17 cells (Il17-producing CD4+ T cells) are considered to play a fundamental role in the immunopathogenesis of EAE. This paper highlights the growing evidence that Th17 cells play the core role in the complex adaptive immunity of EAE/MS and discusses the roles of the associated immune cells and cytokines. These constitute the modern immunological basis for the development of novel clinical and preclinical immunomodulatory therapies for MS discussed in this paper

    Effect of Short-term Arginine Supplementation on Vasodilation and Performance in Intermittent Exercise in Judo Athletes

    Get PDF
    Arginine supplementation has been shown to induce endothelium-dependent vasodilation and enhance exercise performance via increasing nitric oxide (NO) production in patients with various cardiovascular diseases. The purpose of this study was to determin

    TABLE OF CASES

    Get PDF
    <p>Main effects: trial: p<.001; time: p<.001; interaction: p<.001. **p<.01; ***p<0.01.</p

    Gamma Ray and Radon Anomalies in Northern Taiwan as a Possible Preearthquake Indicator around the Plate Boundary

    Get PDF
    Taiwan is tectonically situated in an oblique collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EP). Continuous observations of gamma rays at the Yangmingshan (YMSG) station and soil radon at the Tapingti (TPT) station were recorded in the volcanic area and around a major fault zone, respectively, in Taiwan for seismic studies. A number of anomalous high gamma ray counts and radon concentrations at certain times were found. It is noted that significant increases of soil radon concentrations were observed and followed by the increase in gamma rays a few days to a few weeks before earthquakes that occurred in northeastern Taiwan. Earthquakes such as these are usually related to the subduction of the PSP beneath the EP to the north along the subduction zone in northern Taiwan (e.g., ML = 6 4, April 20, 2015). It is suggested that the preseismic activity may be associated with slow geodynamic processes at the subduction interface, leading to the PSP movement triggering radon enhancements at the TPT station. Furthermore, the further movement of the PSP might be blocked by the EP, with the accumulated elastic stress resulting in the increase of gamma rays due to the increase in porosity and fractures below the YMSG station. The continuous monitoring of the multiple parameters can improve the understanding of the relationship between the observed radon and gamma ray variations and the regional crustal stress/strain in north and northeastern Taiwan

    Unveiling the nature of room-temperature-fabricated p-type SnO thin films : the critical role of intermediate phases, lattice disorder, and oxygen interstitials

    Get PDF
    The fabrication of p-type tin monoxide (SnO) thin films at room temperature poses significant challenges for conventional methods, primarily due to the electrically anisotropic nature and metastable phases of SnO. Because of this anisotropy, generating effective hole carriers with optimal mobility in SnO requires meticulous thermal annealing, which is nonetheless constrained by SnO's metastability. In this work, we employ ion-beam-assisted deposition (IBAD) to fabricate p-type SnO thin films at room temperature. These films, with their nanocrystalline structure, demonstrate promising electrical performance with a Hall mobility of 2.67 cm2V-1s-1 and hole concentration of 5.94×1017 cm-3, notably without the need for annealing treatment. Our investigation has revealed a unique volcano-shaped trend in Hall mobility, and inversely, in carrier concentration in response to variations in the argon flow rate during the IBAD process. This relationship, when correlated with changes in the optical properties, structural phase, and chemical state of the films, is crucial for understanding the origin of p-type conductivity in room-temperature-fabricated SnO films—a topic that remains elusive in the current literature. We observed a direct correlation between enhanced mobility and reduced lattice disorder, as well as a strong association between increasing hole carrier concentration and the formation of oxygen interstitials. We also highlight that the intermediate phase composition plays a vital role in determining the degree of disorder in the SnO film, which is essential for creating transport pathways and the oxygen environment necessary for hole carrier formation. These insights are instrumental in guiding the design and characterization of room-temperature fabricated p-type SnO thin films, thus propelling advancements in the field of large-area, flexible electronics

    Energy replacement using glucose does not increase postprandial lipemia after moderate intensity exercise

    Get PDF
    Aerobic exercise can decrease postprandial triglyceride (TG) concentrations but the relationship between exercise-induced energy deficits and postprandial lipemia is still unclear. The aim of the present study was to examine the effect of a single bout of aerobic exercise, with and without energy replacement, on postprandial lipemia and on peripheral blood mononuclear cell (PBMC) mRNA expression of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) receptors and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)

    Comparison of Skull Motions in Six Degrees of Freedom Between Two Head Supports During Frameless Radiosurgery by CyberKnife

    Get PDF
    Introduction: Maintaining immobilization to minimize skull motion is important during frameless radiosurgery. This study aimed to compare the intrafractional skull motions between two head supports.Methods: With 6D skull tracking system, 4,075 image records from 45 patients receiving radiosurgery by CyberKnife were obtained. Twenty-three patients used TIMO head supports (CIVCO) (Group A) and twenty-two patients used Silverman head supports (CIVCO) with MoldCare cushions (ALCARE) (Group B). The skull motions in X (superior-inferior), Y (right-left), Z (anterior-posterior) axes, 3D (three-dimensional) vector, Roll, Pitch and Yaw between the two groups were compared and the margins of planning target volume were estimated.Results: The translational motions in Group A were similar in three axes at initial but became different after 10 min, and those in Group B were less prominent in the Y axis. The rotational errors in Group A were most obvious in Yaw, but those in Group B were stationary in three axes. The motions in the X axis, 3D vector, Pitch and Yaw in Group B were significantly smaller than those in Group A; conversely, the motions in the Z axis in Group B were larger. To cover the 95% confidence intervals, margins of 0.77, 0.79, and 0.40 mm in the X, Y, and Z axes, respectively, were needed in Group A, and 0.69, 0.50, and 0.51 mm were needed in Group B.Conclusions: Both head supports could provide good immobilization during the frameless radiosurgery. Silverman head support with MoldCare cushion was better than TIMO head support in the superior-inferior direction, 3D vector, Pitch and Yaw axes, but worse in the anterior-posterior direction
    corecore