47 research outputs found

    Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology

    Get PDF
    F-box proteins, the substrate recognition subunits of SKP1–CUL1–F-box protein (SCF) E3 ubiquitin ligase complexes, play crucial roles in various cellular events mediated by ubiquitination. Several sugar-recognizing F-box proteins exist in both mammalian and plant cells. Although glycoproteins generally reside outside of cells, or in organelles of the secretory pathway, these lectin-type F-box proteins reside in the nucleocytoplasmic compartment. Mammalian sugar-recognizing F-box proteins commonly bind to the innermost position of N-glycans through a unique small hydrophobic pocket in their loops. Two cytosolic F-box proteins, Fbs1 and Fbs2, recognize high-mannose glycans synthesized in the ER, and SCFFbs1 and SCFFbs2 ubiquitinate excess unassembled or misfolded glycoproteins in the ERAD pathway by recognizing the innermost glycans, which serve as signals for aberrant proteins. On the other hand, endomembrane-bound Fbs3 recognizes complex glycans as well as high-mannose glycans, and SCFFbs3 ubiquitinates exposed glycoproteins in damaged lysosomes fated for elimination by selective autophagy. Plants express stress-inducible lectin-type F-box proteins recognizing a wider range of N- and O-glycans, suggesting that the roles of mammalian and plant lectin-type F-box proteins have diverged over the course of evolution to recognize species-specific targets with distinct functions. These sugar-recognizing F-box proteins interpret glycans in the cytosol as markers of unwanted proteins and organelles, and degrade them via the proteasome or autophagy

    The Structure of the Mammalian 20S Proteasome at 2.75 Å Resolution

    Get PDF
    AbstractThe 20S proteasome is the catalytic portion of the 26S proteasome. Constitutively expressed mammalian 20S proteasomes have three active subunits, β1, β2, and β5, which are replaced in the immunoproteasome by interferon-γ-inducible subunits β1i, β2i, and β5i, respectively. Here we determined the crystal structure of the bovine 20S proteasome at 2.75 Å resolution. The structures of α2, β1, β5, β6, and β7 subunits of the bovine enzyme were different from the yeast enzyme but enabled the bovine proteasome to accommodate either the constitutive or the inducible subunits. A novel N-terminal nucleophile hydrolase activity was proposed for the β7 subunit. We also determined the site of the nuclear localization signals in the molecule. A model of the immunoproteasome was predicted from this constitutive structure

    Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans

    Get PDF
    Removal of the fucose residue from the N-glycans of the Fc portion of immunoglobulin G (IgG) results in a dramatic enhancement of antibody-dependent cellular cytotoxicity (ADCC) through improved affinity for Fcγ receptor IIIa (FcγRIIIa). Here, we present the 2.2-Å structure of the complex formed between nonfucosylated IgG1-Fc and a soluble form of FcγRIIIa (sFcγRIIIa) with two N-glycosylation sites. The crystal structure shows that one of the two N-glycans of sFcγRIIIa mediates the interaction with nonfucosylated Fc, thereby stabilizing the complex. However, fucosylation of the Fc N-glycans inhibits this interaction, because of steric hindrance, and furthermore, negatively affects the dynamics of the receptor binding site. Our results offer a structural basis for improvement in ADCC of therapeutic antibodies by defucosylation

    Moyamoya disease patient mutations in the RING domain of RNF213 reduce its ubiquitin ligase activity and enhance NFκB activation and apoptosis in an AAA+ domain-dependent manner

    Get PDF
    Moyamoya disease (MMD) is a cerebrovascular disease characterized by progressive occlusion of the internal carotid arteries. Genetic studies originally identified RNF213 as an MMD susceptibility gene that encodes a large 591 kDa protein with a functional RING domain and dual AAA+ ATPase domains. As the functions of RNF213 and its relationship to MMD onset are unknown, we set out to characterize the ubiquitin ligase activity of RNF213, and the effects of MMD patient mutations on these activities and on other cellular processes. In vitro ubiquitination assays, using the RNF213 RING domain, identified Ubc13/Uev1A as a key ubiquitin conjugating enzyme that together generate K63-linked polyubiquitin chains. However, nearly all MMD patient mutations in the RING domain greatly reduced this activity. When full-length proteins were overexpressed in HEK293T cells, patient mutations that abolished the ubiquitin ligase activities conversely enhanced nuclear factor κB (NFκB) activation and induced apoptosis accompanied with Caspase-3 activation. These induced activities were dependent on the RNF213 AAA+ domain. Our results suggest that the NFκB- and apoptosis-inducing functions of RNF213 may be negatively regulated by its ubiquitin ligase activity and that disruption of this regulation could contribute towards MMD onset

    The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection

    Get PDF
    SummaryCaspase-mediated inflammatory cell death acts as an intrinsic defense mechanism against infection. Bacterial pathogens deploy countermeasures against inflammatory cell death, but the mechanisms by which they do this remain largely unclear. In a screen for Shigella flexneri effectors that regulate cell death during infection, we discovered that Shigella infection induced acute inflammatory, caspase-4-dependent epithelial cell death, which is counteracted by the bacterial OspC3 effector. OspC3 interacts with the caspase-4-p19 subunit and inhibits its activation by preventing caspase-4-p19 and caspase-4-p10 heterodimerization by depositing the conserved OspC3 X1-Y-X2-D-X3 motif at the putative catalytic pocket of caspase-4. Infection of guinea pigs with a Shigella ospC3-deficient mutant resulted in enhanced inflammatory cell death and associated symptoms, correlating with decreased bacterial burdens. Salmonella Typhimurium and enteropathogenic Escherichia coli infection also induced caspase-4-dependent epithelial death. These findings highlight the importance of caspase-4-dependent innate immune responses and demonstrate that Shigella delivers a caspase-4-specific inhibitor to delay epithelial cell death and promote infection

    p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response

    Get PDF
    Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress. Liquid-liquid phase separation of p62/SQSTM1 has been previously described, although the significance in vivo remains unclear. Here the authors show p62 droplets contain ubiquitin, autophagy-related proteins and Keap1 to serve as platform of not only autophagosome formation but also Nrf2 activation.Peer reviewe

    p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response

    Get PDF
    Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress

    Structural insight into the recognition of the linear ubiquitin assembly complex by Shigella E3 ligase IpaH1.4/2.5

    No full text
    Pathogenic bacteria deliver virulence factors called effectors into host cells in order to facilitate infection. The Shigella effector proteins IpaH1.4 and IpaH2.5 are members of the “novel E3 ligase” (NEL)-type bacterial E3 ligase family. These proteins ubiquitinate the linear ubiquitin assembly complex (LUBAC) to inhibit nuclear factor (NF)-κB activation and, concomitantly, the inflammatory response. However, the molecular mechanisms underlying the interaction and recognition between IpaH1.4 and IpaH2.5 and LUBAC is unclear. Here we present the crystal structures of the substrate-recognition domains of IpaH1.4 and IpaH2.5 at resolutions of 1.4 and 3.4 Å, respectively. The LUBAC-binding site on IpaH1.4 was predicted based on structural comparisons with the structures of other NEL-type E3s. Structural and biochemical data were collected and analyzed to determine the specific residues of IpaH1.4 that are involved in interactions with LUBAC and influence NF-κB signaling. The new structural insight presented here demonstrates how bacterial pathogens target innate immune signaling pathways
    corecore