42 research outputs found

    Evolution of dynamical motions in monolayer protected metal-clusters

    Get PDF
    Here we report orientational dynamics in monolayer protected metal-cluster (MPC) systems as studied by quasielastic neutron scattering (QENS) technique. Experiments carried out using two different instruments having very different energy windows, thus covering a time scale of 10-9-10-12 s. Clear evidence of absence of 'rotator phase' has been found in isolated MPCs (Au-SC18H37, Au-SC12H25, Au-SC8H17 and Au-SC6H13), a superlattice MPC (Ag-SC18H37) as well as planar thiolates (Ag-SC6H13, Ag-SC12H25, Ag-SC18H37) at room temperature. However, dynamics were found to evolve on increase of temperature and its behaviour is found to be different in the superlattice and isolated cluster systems. Detailed dynamical informations for MPCs are obtained for the first time in these systems

    Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer.</p> <p>Methods</p> <p>cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO) and a primary human breast cancer cell line (MDA-231). The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis.</p> <p>Results</p> <p>The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO) compared to the primary human breast cancer cell line (MDA-231). The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor tissues compared to non-bone metastatic breast cancer cell lines and tumor tissues by real time RT-PCR, Western blot and TMA. Furthermore, serum levels of BST2 measured by ELISA were also significantly higher among patients with breast cancer metastatic to bone compared to breast cancer patients without metastatic to bone (P < .0001). Most importantly, the breast cancer cell line that transfected with BST2 demonstrated increased BST2 expressions, which was associated with increased cancer cell migration and cell proliferation.</p> <p>Conclusion</p> <p>These results provide novel data indicating the BST2 protein expression is associated with the formation of bone metastases in human breast cancer. We believe that BST2 may be a potential biomarker in breast cancer with bone metastasis.</p

    Serum tartrate-resistant acid phosphatase 5b activity as a prognostic marker of survival in breast cancer with bone metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum tartrate-resistant acid phosphatase 5b (TRACP 5b) activity is a marker of osteoclast number and is elevated in breast cancer (BC) patients with extensive bone metastasis, which might in turn reflect the tumour burden. We tested the hypothesis that baseline serum TRACP 5b activity and its interval change are potential prognostic markers of survival in BC patients with bone metastasis.</p> <p>Methods</p> <p>We analyzed the data from previous prospective studies. A total of 100 patients with newly diagnosed bone metastasis were included. Cox proportional regression model was used to evaluate the correlation between the overall survival time (OS) and baseline serum TRACP 5b activity and its interval changes. The least significant change (LSC) of TRACP 5b was calculated from data obtained from 15 patients with early BC.</p> <p>Results</p> <p>Estrogen receptor status (Hazard Ratio (HR) = 0.397; <it>p </it>= 0.003) and visceral metastasis (HR = 0.492; <it>p </it>= 0.0045) were significantly correlated with OS. The OS was significantly shorter in those patients with higher baseline TRACP 5b activity based on a cut-off value to delineate the highest tertile (HR = 3.524; <it>p </it>< 0.0001). Further analysis demonstrated that among patients in the highest tertile, OS was significantly longer in those patients who had achieved a decrease of serum TRACP 5b activity greater than the LSC (38.59%) (<it>p </it>= 0.0015).</p> <p>Conclusions</p> <p>We found that TRACP 5b activity and its interval change after treatment bore a prognostic role in BC patients with bone metastasis and a high baseline serum TRACP 5b activity. Further prospective phase II study is necessary to confirm these results.</p

    Non-Gaussian behavior of crystalline and amorphous phases of polyethylene

    Get PDF
    We report on measurements of the incoherent elastic neutron-scattering intensity I-el(Q) of polyethylenes with degrees of crystallinity 0.46 and 0.96 in a wide Q (length of scattering vector) range from 0.4 to 6.2 Angstrom(-1) to observe the deviation from the Gaussian behavior. The non-Gaussian behavior was observed in both the amorphous and the crystalline phases. The non-Gaussian behavior in the theoretically well-known crystalline phase can be understood more or less quantitatively;in terms of the anisotropy of the mean-square displacement. The result implies that at least a part of the non-Gaussian behavior of the amorphous phase is due to the same source, while another part may be due to the dynamical heterogeneity inherent to the amorphous phase

    Coevolutionary feedback elevates constitutive immune defence: a protein network model

    No full text
    Abstract Background Organisms have evolved a variety of defence mechanisms against natural enemies, which are typically used at the expense of other life history components. Induced defence mechanisms impose minor costs when pathogens are absent, but mounting an induced response can be time-consuming. Therefore, to ensure timely protection, organisms may partly rely on constitutive defence despite its sustained cost that renders it less economical. Existing theoretical models addressing the optimal combination of constitutive versus induced defence focus solely on host adaptation and ignore the fact that the efficacy of protection depends on genotype-specific host-parasite interactions. Here, we develop a signal-transduction network model inspired by the invertebrate innate immune system, in order to address the effect of parasite coevolution on the optimal combination of constitutive and induced defence. Results Our analysis reveals that coevolution of parasites with specific immune components shifts the host’s optimal allocation from induced towards constitutive immunity. This effect is dependent upon whether receptors (for detection) or effectors (for elimination) are subjected to parasite counter-evolution. A parasite population subjected to a specific immune receptor can evolve heightened genetic diversity, which makes parasite detection more difficult for the hosts. We show that this coevolutionary feedback renders the induced immune response less efficient, forcing the hosts to invest more heavily in constitutive immunity. Parasites diversify to escape elimination by a specific effector too. However, this diversification does not alter the optimal balance between constitutive and induced defence: the reliance on constitutive defence is promoted by the receptor’s inability to detect, but not the effectors’ inability to eliminate parasites. If effectors are useless, hosts simply adapt to tolerate, rather than to invest in any defence against parasites. These contrasting results indicate that evolutionary feedback between host and parasite populations is a key factor shaping the selection regime for immune networks facing antagonistic coevolution. Conclusion Parasite coevolution against specific immune defence alters the prediction of the optimal use of defence, and the effect of parasite coevolution varies between different immune components
    corecore