2,383 research outputs found

    Evidence of Early Enrichment of the Galactic Disk by Large-Scale Winds

    Full text link
    Large-scale homogeneous surveys of Galactic stars may indicate that the elemental abundance gradient evolves with cosmic time, a phenomenon that was not foreseen in existing models of Galactic chemical evolution (GCE). If the phenomenon is confirmed in future studies, we show that this effect, at least in part, is due to large-scale winds that once enriched the disk. These set up the steep abundance gradient in the inner disk (R <14 kpc). At the close of the wind phase, chemical enrichment through accretion of metal-poor material from the halo onto the disk gradually reduced the metallicity of the inner region, whereas a slow increase in the metallicity proceeded beyond the solar circle. Our "wind+infall" model accounts for flattening of the abundance gradient in the inner disk, in good agreement with observations. Accordingly, we propose that enrichment by large-scale winds is a crucial factor for chemical evolution in the disk. We anticipate that rapid flattening of the abundance gradient is the hallmarks of disk galaxies with significant central bulges.Comment: 9 pages including 5 figures, accepted for publication in PAS

    A Systematic Study of X-Ray Flares from Low-Mass Young Stellar Objects in the Rho Ophiuchi Star-Forming Region with Chandra

    Full text link
    We report on the results of a systematic study of X-ray flares from low-mass young stellar objects, using Chandra observations of the main region of the Rho Oph. From 195 X-ray sources, including class I-III sources and some young brown dwarfs, we detected a total of 71 X-ray flares. Most of the flares have the typical profile of solar and stellar flares, fast rise and slow decay. We derived the time-averaged temperature (kT), luminosity (L_X), rise and decay timescales (tau_r and tau_d) of the flares, finding that (1) class I-II sources tend to have a high kT, (2) the distribution of L_X during flares is nearly the same for all classes, and (3) positive and negative log-linear correlations are found between tau_r and tau_d, and kT and tau_r. In order to explain these relations, we used the framework of magnetic reconnection model to formulate the observational parameters as a function of the half-length of the reconnected magnetic loop (L) and magnetic field strength (B). The estimated L is comparable to the typical stellar radius of these objects (10^{10-11} cm), which indicates that the observed flares are triggered by solar-type loops, rather than larger ones (10^{12} cm) connecting the star with its inner accretion disk. The higher kT observed for class I sources may be explained by a higher magnetic field strength (about 500 G) than for class II-III sources (200-300 G).Comment: 33 pages, 7 figures, accepted for publication in PASJ, the complete version of tables are available at ftp://ftp-cr.scphys.kyoto-u.ac.jp/pub/crmember/kensuke/PASJ_RhoOph/KI_all.tar .g

    Nucleosynthesis in Type II Supernovae

    Get PDF
    Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 M⊙M_\odot to 70 M⊙M_\odot are calculated. We examine the dependence of the supernova yields on the stellar mass, ^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear Physics A, Vol. A616 (1997

    NGC 7538 : Multiwavelength Study of Stellar Cluster Regions associated with IRS 1-3 and IRS 9 sources

    Full text link
    We present deep and high-resolution (FWHM ~ 0.4 arcsec) near-infrared (NIR) imaging observations of the NGC 7538 IRS 1-3 region (in JHK bands), and IRS 9 region (in HK bands) using the 8.2m Subaru telescope. The NIR analysis is complemented with GMRT low-frequency observations at 325, 610, and 1280 MHz, molecular line observations of H13CO+ (J=1-0), and archival Chandra X-ray observations. Using the 'J-H/H-K' diagram, 144 Class II and 24 Class I young stellar object (YSO) candidates are identified in the IRS 1-3 region. Further analysis using 'K/H-K' diagram yields 145 and 96 red sources in the IRS 1-3 and IRS 9 regions, respectively. A total of 27 sources are found to have X-ray counterparts. The YSO mass function (MF), constructed using a theoretical mass-luminosity relation, shows peaks at substellar (~0.08-0.18 Msolar) and intermediate (~1-1.78 Msolar) mass ranges for the IRS 1-3 region. The MF can be fitted by a power law in the low mass regime with a slope of Gamma ~ 0.54-0.75, which is much shallower than the Salpeter value of 1.35. An upper limit of 10.2 is obtained for the star to brown dwarf ratio in the IRS 1-3 region. GMRT maps show a compact HII region associated with the IRS 1-3 sources, whose spectral index of 0.87+-0.11 suggests optical thickness. This compact region is resolved into three separate peaks in higher resolution 1280 MHz map, and the 'East' sub-peak coincides with the IRS 2 source. H13CO+ (J=1-0) emission reveals peaks in both IRS 1-3 and IRS 9 regions, none of which are coincident with visible nebular emission, suggesting the presence of dense cloud nearby. The virial masses are approximately of the order of 1000 Msolar and 500 Msolar for the clumps in IRS 1-3 and IRS 9 regions, respectively.Comment: 27 pages, 18 figures, 5 tables. Accepted for publication in MNRA
    • …
    corecore