13 research outputs found

    Few-mode metal-free perovskite optical fiber with second-order optical nonlinearity

    Get PDF
    Semiconductor core optical fibers are highly desirable for fiber-based photonic and optoelectronic applications as they can combine strong optical nonlinearities, tight light confinement, wide transmission bands, and electronic functionality within a single platform. Perovskites have emerged as particularly exciting materials for semiconductor photonics as they have strong optical nonlinearities and tunable optoelectronic bandgaps. However, lead-based perovskites contain toxic elements and are, therefore, not environmentally friendly. Furthermore, in fiber form, their core-size is prohibitively large, making them unsuitable for nonlinear optics and applications that require single-mode guidance, such as telecommunications. Here, we report a metal-free perovskite core optical fiber where lead has been substituted for an ammonium cation in the perovskite structure. The core material has a wide bandgap greater than 5 eV, a high laser damage threshold, and a core diameter that can be produced as small as 5 \ub5m. At this core size, the fiber supports just six modes, and the fundamental mode can readily be excited and isolated. Moreover, the metal-free perovskite has a second-order susceptibility that is absent in the archetypal lead-based perovskites and many other semiconductor core materials, such as silicon and germanium. The second-order susceptibility is important for many nonlinear optics applications, such as second-harmonic generation and quantum optics

    Recent progress of semiconductor optoelectronic fibers

    No full text

    Accuracy and reliability of cetacean cranial measurements using computed tomography three dimensional volume rendered images

    No full text
    201810_a bcma; 201805 bcrcVersion of RecordPublishe
    corecore