74 research outputs found

    Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    Get PDF
    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5′ flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition

    Are substitution rates and RNA editing correlated?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.</p> <p>Results</p> <p>We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3<sup>rd </sup>codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but <it>ccm</it>B, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate).</p> <p>Conclusions</p> <p>The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.</p

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Erratum

    No full text
    corecore