132 research outputs found
Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro
Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs
A study on EMI noise source modeling with voltage source in synchronous DC-DC buck converter
Y. Saito, T. Ibuchi, T. Funaki, K. Kawai and T. Tsuda, "A study on EMI noise source modeling with voltage source in synchronous DC-DC buck converter," 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 2020, pp. 470-475, doi: 10.1109/PEDG48541.2020.9244423
Appearance of renal hemorrhage in adult mice after inoculation of patient-derived hantavirus
Background: Hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus infection is characterized by fever, renal dysfunction and hemorrhage. An animal model mimicking symptoms of HFRS remains to be established. In this study, we evaluated the pathogenicity of an HFRS patient-derived Hantaan virus (HTNV) in adult mice.
Methods: Five clones of HTNV strain KHF 83-61 BL (KHFV) that was derived from blood of an HFRS patient were obtained by plaque cloning. The pathogenicity of the virus clones was evaluated by using 6-week-old female BALB/c mice. Sequence analysis of the viral genome was performed by conventional methods.
Results: All of the mice intravenously inoculated with KHFV clone (cl)-1, -2, -3 and -5 showed signs of disease such as transient body weight loss, ruffled fur, reduced activity and remarkably prominent hemorrhage in the renal medulla at 6 to 9 days post-inoculation (dpi) and then recovered. In contrast, mice intravenously inoculated with KHFV cl-4 did not show any signs of disease. We selected KHFV cl-5 and cl-4 as representative of high-pathogenic and low-pathogenic clones, respectively. Quantities of viral RNA in kidneys of KHFV cl-5-infected mice were larger than those in KHFV cl-4-infected mice at any time point examined (3, 6, 9 and 12 dpi). The quantities of viral RNA of KHFV cl-5 and cl-4 peaked at 3 dpi, which was before the onset of disease. Sequence analysis revealed that the amino acid at position 417 in the glycoprotein Gn was the sole difference in viral proteins between KHFV cl-5 and cl-4. The result suggests that amino acid at position 417 in Gn is related to the difference in pathogenicity between KHFV cl-5 and cl-4. When the inoculum of KHFV cl-5 was pretreated with a neutralizing antibody against HTNV strain 76-118, which belongs to the same serotype as KHFV clones, mice did not show any signs of disease, confirming that the disease was caused by KHFV infection.
Conclusion: We found that an HFRS patient-derived HTNV caused renal hemorrhage in adult mice. We anticipate that this infection model will be a valuable tool for understanding the pathogenesis of HFRS
A Difficult Differential Diagnosis of Acute Cholecystitis in a Patient With Steroid-induced Diabetes
An impairment of gallbladder motility due to autonomic neuropathy may cause cholestasis and result in gallbladder stone formation. Diabetes is one of risk factors for acute cholecystitis. Diabetes and steroid use are associated with the susceptibility to bacterial infections, we are apt to diagnose steroid-induced diabetic patients manifesting symptoms of cholecystitis as having acute bacterial infective cholecystitis. Here, we report a very rare steroid-induced diabetic patient complicated with gallbladder torsion-induced necrotizing cholecystitis due to a floating gallbladder
The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes
A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure
JNK pathway plays a critical role for expansion of human colorectal cancer in the context of BRG1 suppression
Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC
Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis
膵癌悪性化の分子機構解明 --RECK発現の低下が膵癌の浸潤・転移を引き起こす--. 京都大学プレスリリース. 2023-09-19.RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast–like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC
Nonmagnetic framboid and associated iron nanoparticles with a space-weathered feature from asteroid Ryugu
リュウグウ試料に初期太陽系の新しい磁気記録媒体を発見~太陽系磁場の新たな研究手法の確立に期待~.京都大学プレスリリース. 2024-04-30.Extraterrestrial minerals on the surface of airless Solar System bodies undergo gradual alteration processes known as space weathering over long periods of time. The signatures of space weathering help us understand the phenomena occurring in the Solar System. However, meteorites rarely retain the signatures, making it impossible to study the space weathering processes precisely. Here, we examine samples retrieved from the asteroid Ryugu by the Hayabusa2 spacecraft and discover the presence of nonmagnetic framboids through electron holography measurements that can visualize magnetic flux. Magnetite particles, which normally provide a record of the nebular magnetic field, have lost their magnetic properties by reduction via a high-velocity (>5 km s⁻¹) impact of a micrometeoroid with a diameter ranging from 2 to 20 μm after destruction of the parent body of Ryugu. Around these particles, thousands of metallic-iron nanoparticles with a vortex magnetic domain structure, which could have recorded a magnetic field in the impact event, are found. Through measuring the remanent magnetization of the iron nanoparticles, future studies are expected to elucidate the nature of the nebular/interplanetary magnetic fields after the termination of aqueous alteration in an asteroid
- …