19 research outputs found

    Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strong immunity of plants to pathogenic microorganisms is often mediated by highly specific mechanisms of non-self recognition that are dependent on disease resistance (<it>R</it>) genes. The <it>Arabidopsis thaliana </it>protein EDM2 is required for immunity mediated by the <it>R </it>gene <it>RPP7</it>. EDM2 is nuclear localized and contains typical features of transcriptional and epigenetic regulators. In addition, to its role in immunity, EDM2 plays also a role in promoting floral transition. This developmental function of EDM2, but not its role in <it>RPP7</it>-mediated disease resistance, seems to involve the protein kinase WNK8, which physically interacts with EDM2 in nuclei.</p> <p>Results</p> <p>Here we report that EDM2 affects additional developmental processes which include the formation of leaf pavement cells and leaf expansion as well as the development of morphological features related to vegetative phase change. EDM2 has a promoting effect of each of these processes. While WNK8 seems not to exhibit any vegetative phase change-related function, it has a promoting effect on the development of leaf pavement cells and leaf expansion. Microarray data further support regulatory interactions between WNK8 and EDM2. The fact that the effects of EDM2 and WNK8 on leaf pavement cell formation and leaf expansion are co-directional, while WNK8 counteracts the promoting effect of EDM2 on floral transition, is surprising and suggests that WNK8 can modulate the activity of EDM2.</p> <p>Conclusion</p> <p>We propose that EDM2 has been co-opted to distinct regulatory modules controlling a set of different processes in plant immunity and development. WNK8 appears to modulate some functions of EDM2.</p

    The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression

    Get PDF
    Plant NLR-type receptors serve as sensitive triggers of host immunity. Their expression has to be well-balanced, due to their interference with various cellular processes and dose-dependency of their defense-inducing activity. A genetic “arms race” with fast-evolving pathogenic microbes requires plants to constantly innovate their NLR repertoires. We previously showed that insertion of the COPIA-R7 retrotransposon into RPP7 co-opted the epigenetic transposon silencing signal H3K9me2 to a new function promoting expression of this Arabidopsis thaliana NLR gene. Recruitment of the histone binding protein EDM2 to COPIA-R7-associated H3K9me2 is required for optimal expression of RPP7. By profiling of genome-wide effects of EDM2, we now uncovered additional examples illustrating effects of transposons on NLR gene expression, strongly suggesting that these mobile elements can play critical roles in the rapid evolution of plant NLR genes by providing the “raw material” for gene expression mechanisms. We further found EDM2 to have a global role in NLR expression control. Besides serving as a positive regulator of RPP7 and a small number of other NLR genes, EDM2 acts as a suppressor of a multitude of additional NLR genes. We speculate that the dual functionality of EDM2 in NLR expression control arose from the need to compensate for fitness penalties caused by high expression of some NLR genes by suppression of others. Moreover, we are providing new insights into functional relationships of EDM2 with its interaction partner, the RNA binding protein EDM3/AIPP1, and its target gene IBM1, encoding an H3K9-demethylase

    The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides

    No full text
    Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain

    An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication

    No full text
    Transposable elements (TEs) can drive evolution by creating genetic and epigenetic variation. Although examples of adaptive TE insertions are accumulating, proof that epigenetic information carried by such "domesticated" TEs has been coopted to control host gene function is still limited. We show that COPIA-R7, a TE inserted into the Arabidopsis thaliana disease resistance gene RPP7 recruited the histone mark H3K9me2 to this locus. H3K9me2 levels at COPIA-R7 affect the choice between two alternative RPP7 polyadenylation sites in the pre-mRNA and, thereby, influence the critical balance between RPP7-coding and non-RPP7-coding transcript isoforms. Function of RPP7 is fully dependent on high levels of H3K9me2 at COPIA-R7. We present a direct in vivo demonstration for cooption of a TE-associated histone mark to the epigenetic control of pre-mRNA processing and establish a unique mechanism for regulation of plant immune surveillance gene expression. Our results functionally link a histone mark to alternative polyadenylation and the balance between distinct transcript isoforms from a single gene
    corecore