7 research outputs found
Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within our Galaxy
TAMA300, an interferometric gravitational-wave detector with 300-m baseline
length, has been developed and operated with sufficient sensitivity to detect
gravitational-wave events within our galaxy and sufficient stability for
observations; the interferometer was operated for over 10 hours stably and
continuously. With a strain-equivalent noise level of , a signal-to-noise ratio (SNR) of 30 is expected for
gravitational waves generated by a coalescence of 1.4 -1.4
binary neutron stars at 10 kpc distance. %In addition, almost all noise sources
which limit the sensitivity and which %disturb the stable operation have been
identified. We evaluated the stability of the detector sensitivity with a
2-week data-taking run, collecting 160 hours of data to be analyzed in the
search for gravitational waves.Comment: 5 pages, 4 figure
Construction of KAGRA: An underground gravitational-wave observatory
The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a study of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel. © The Author(s) 2018. Published by Oxford University Press on behalf of the Physical Society of Japan
Overview of KAGRA : Data transfer and management
International audienceAbstract KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu prefecture, Japan. In this article, we describe the KAGRA data management system, i.e., recording of data, transfer from the KAGRA experiment site to computing resources, as well as data distribution to tier sites, including international sites in Taiwan and Korea. The amount of KAGRA data exceeded 1.0 PiB and increased by about 1.5 TB/day for operation in 2020. Our system has succeeded in data management, and has achieved performance that can withstand observations after 2023, that is, a transfer rate of 20 MB/s or more and file storage of sufficient capacity for petabyte class. We also discuss the sharing of data between the global gravitational-wave detector network with other experiments, namely LIGO and Virgo. The latency, which consists of calculation of calibrated strain data and transfer time within the global network, is very important from the view of multi-messenger astronomy using gravitational waves. Real-time calbrated data from the KAGRA detector site and other detectors to our computing system arrive with about 4 – 15 seconds of latency. These latencies are sufficiently short compared to the time taken for gravitational wave event search computations. We also established a high-latency exchange of offline calibrated data that was aggregated with a better accuracy compared with real-time data.</jats:p