11 research outputs found

    Phase diagram at finite temperature and quark density in the strong coupling region of lattice QCD for color SU(3)

    Get PDF
    We study the phase diagram of quark matter at finite temperature (T) and chemical potential (mu) in the strong coupling region of lattice QCD for color SU(3). Baryon has effects to extend the hadron phase to a larger mu direction relative to Tc at low temperatures in the strong coupling limit. With the 1/g^2 corrections, Tc is found to decrease rapidly as g decreases, and the shape of the phase diagram becomes closer to that expected in the real world.Comment: 4 pages, 4 figures. To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Shanghai, China, Nov. 14-20, 2006 (Quark Matter 2006

    Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae

    Full text link
    We present sets of equation of state (EOS) of nuclear matter including hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a wide coverage of density, temperature, and charge fraction for numerical simulations of core collapse supernovae. Coupling constants of Sigma and Xi hyperons with the sigma meson are determined to fit the hyperon potential depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV, which are suggested from recent analyses of hyperon production reactions. At low densities, the EOS of uniform matter is connected with the EOS by Shen et al., in which formation of finite nuclei is included in the Thomas-Fermi approximation. In the present EOS, the maximum mass of neutron stars decreases from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. In a spherical, adiabatic collapse of a 15MM_\odot star by the hydrodynamics without neutrino transfer, hyperon effects are found to be small, since the temperature and density do not reach the region of hyperon mixture, where the hyperon fraction is above 1 % (T > 40 MeV or rho_B > 0.4 fm^{-3}).Comment: 23 pages, 6 figures (Fig.3 and related comments on pion potential are corrected in v3.

    Possibility of s-wave pion condensates in neutron stars revisited

    Full text link
    We examine possibilities of pion condensation with zero momentum (s-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parameterized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. Proton fraction (Y_p) and electron chemical potential (mu_e) in neutron star matter are evaluated in RMF models. We find that the s-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or b_1 parameter in U has density dependence.Comment: 4 pages, 3 figures, REVTe

    EOS of hyperonic matter for core-collapse supernovae

    Get PDF
    Abstract We discuss the properties of supernova matter equation of state (EOS) including hyperons, and the emergence of hyperons in dynamical core-collapse processes. The recently tabulated EOS including hyperons is based on an SU f (3) extended relativistic mean field (RMF) model, in which the coupling constants of hyperons with scalar mesons are determined to fit the hyperon potential depths in nuclear matter, (U Σ , U Ξ ) = (+30MeV, −15 MeV), which are suggested from recent analyses of hyperon production reactions. Hyperon effects are found to be small in the core-collapse and bounce stages, but abundant hyperons appear when the temperature becomes high during the black hole formation and promote earlier collapse of the accreting proto-neutron star. The maximum mass of hot proto-neutron star is discussed, and it gives a rough estimate of the critical mass of the accreting proto-neutron star, at which the proto-neutron star re-collapses to a black hole

    Bioactivity of the insulin-like growth factors in normal and diabetic humans and rats

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN023502 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore