88 research outputs found

    Significant Expansion of Real-Time PCR Multiplexing with Traditional Chemistries using Amplitude Modulation

    Get PDF
    The real time polymerase chain reaction (rtPCR) is an essential method for detecting nucleic acids that has a wide range of clinical and research applications. Current multiplexed rtPCR is capable of detecting four to six nucleic acid targets in a single sample. However, advances in clinical medicine are driving the need to measure many more targets at once. We demonstrate a novel method which significantly increases the multiplexing capability of any existing rtPCR instrument without new hardware, software, or chemistry. The technique works by varying the relative TaqMan probe concentrations amongst targets that are measured in a single fluorometric channel. Our fluorescent amplitude modulation method generates a unique rtPCR signature for every combination of targets present in a reaction. We demonstrate this technique by measuring nine different targets across three color channels with TaqMan reporting probes, yielding a detection accuracy of 98.9% across all combinations of targets. In principle this method could be extended to measure 6 or more targets per color channel across any number of color channels without loss in specificity

    Multilaboratory Evaluation of Real-Time PCR Tests for Hepatitis B Virus DNA Quantification

    Get PDF
    The performance characteristics of four different assays for hepatitis B virus (HBV) quantification were assessed: the Abbott RealTime HBV IUO, the Roche Cobas AmpliPrep/Cobas TaqMan HBV test, the Roche Cobas TaqMan HBV test with HighPure system, and the Qiagen artus HBV TM ASR. Limit of detection (LOD), linear range, reproducibility, and agreement were determined using a serially diluted plasma sample from a single chronically infected subject. Each assay was tested by at least three laboratories. The LOD of the RealTime and two TaqMan assays was approximately 1.0 log10 IU/ml; for artus HBV (which used the lowest volume of extracted DNA), it was approximately 1.5 log10 IU/ml. The linear range spanned 1.0 to at least 7.0 log10 IU/ml for all assays. Median values were consistently lowest for artus HBV and highest for Cobas AmpliPrep/Cobas TaqMan HBV. Assays incorporating automated nucleic acid extraction were the most reproducible; however, the overall variability was minor since the standard deviations for the means of all tested concentrations were ≤0.32 log10 IU/ml for all assays. False-positive results were observed with all assays; the highest rates occurred with tests using manual nucleic acid extraction. The performance characteristics of these assays suggest that they are useful for management and therapeutic monitoring of chronic HBV infection

    Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: the impact of APOE and smoking

    Get PDF
    PURPOSE: This study examined the association of post-treatment changes in cognitive performance, apolipoprotein E (APOE), and smoking in breast cancer patients treated with adjuvant therapy. PARTICIPANTS AND METHODS: Breast cancer patients treated with chemotherapy (N = 55, age = 51.9 ± 7.1, education = 15.7 ± 2.6) were evaluated with a battery of neuropsychological tests prior to chemotherapy and at 1, 6, and 18 months post-chemotherapy. Matched groups of breast cancer patients not exposed to chemotherapy (N = 68, age = 56.8 ± 8.3, education = 14.8 ± 2.2) and healthy controls (N = 43, age = 53.0 ± 10.1, education = 15.2 ± 2.6) were evaluated at similar intervals. APOE epsilon 4 carrier status (APOE4+) and smoking history were also evaluated. RESULTS: The detrimental effect of APOE4+ genotype on post-treatment cognitive functioning was moderated by smoking history, that is, patients without a smoking history had significantly lower performance on measures of processing speed and working memory compared with those with a smoking history and healthy controls. Exploratory analyses revealed that APOE4+ patients without a smoking history who were exposed to chemotherapy showed a decline in performance in processing speed, compared with patients with a smoking history. A similar but less pronounced pattern was seen in the no chemotherapy group (primarily endocrine treatment). For working memory, the APOE4+ by smoking interaction was observed in the no chemotherapy group only. CONCLUSIONS: The association between APOE status, breast cancer treatment, and cognitive functioning was moderated by smoking history suggesting that both chemotherapy and endocrine therapy interact with APOE status and smoking to influence cognition. A putative mechanism is that smoking corrects a deficit in nicotinic receptor functioning and dopamine levels in APOE4+ individuals

    Dietary calcium intake and Renin Angiotensin System polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design

    Get PDF
    BACKGROUND: Dietary calcium intake and the renin angiotensin system (RAS) regulate blood pressure (BP) by modulating calcium homeostasis. Despite similar BP regulatory effects, the influence of dietary calcium intake alone and combined with RAS polymorphisms on the BP response following acute aerobic exercise (i.e., postexercise hypotension) has not been studied. Thus, we examined the effect of dietary calcium intake and selected RAS polymorphisms on postexercise hypotension. METHODS: Subjects were men (n = 50, 43.8 ± 1.3 yr) with high BP (145.3 ± 1.5/85.9 ± 1.1 mm Hg). They completed three experiments: non-exercise control and two cycle bouts at 40% and 60% of maximal oxygen consumption (VO(2)max). Subjects provided 3 d food records on five protocol-specific occasions. Dietary calcium intake was averaged and categorized as low (<880 mg/d = LowCa) or high (≥ 880 mg/d = HighCa). RAS polymorphisms (angiotensin converting enzyme insertion/deletion, ACE I/D; angiotensin II type 1 receptor, AT(1)R A/C) were analyzed with molecular methods. Genotypes were reduced from three to two: ACE II/ID and ACE DD; or AT(1)R AA and AT(1)R CC/AC. Repeated measure ANCOVA tested if BP differed among experiments, dietary calcium intake level and RAS polymorphisms. RESULTS: Systolic BP (SBP) decreased 6 mm Hg after 40% and 60% VO(2)max compared to non-exercise control for 10 h with LowCa (p < 0.01), but not with HighCa (p ≥ 0.05). Under these conditions, diastolic BP (DBP) did not differ between dietary calcium intake levels (p ≥ 0.05). With LowCa, SBP decreased after 60% VO(2)max versus non-exercise control for 10 h among ACE II/ID (6 mm Hg) and AT(1)R AA (8 mm Hg); and by 8 mm Hg after 40% VO(2)max among ACE DD and AT(1)R CC/CA (p < 0.01). With HighCa, SBP (8 mm Hg) and DBP (4 mm Hg) decreased after 60% VO(2)max compared to non-exercise control for 10 h (p < 0.05), but not after 40% VO(2)max (p ≥ 0.05). CONCLUSION: SBP decreased after exercise compared to non-exercise control among men with low but not high dietary calcium intake. Dietary calcium intake interacted with the ACE I/D and AT(1)R A/C polymorphisms to further modulate postexercise hypotension. Interactions among dietary calcium intake, exercise intensity and RAS polymorphisms account for some of the variability in the BP response to exercise

    Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers

    Get PDF
    Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%–35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our rightsided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 x 10−10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals

    Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury

    Get PDF
    Problems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation

    Significant Expansion of Real-Time PCR Multiplexing with Traditional Chemistries using Amplitude Modulation

    Get PDF
    The real time polymerase chain reaction (rtPCR) is an essential method for detecting nucleic acids that has a wide range of clinical and research applications. Current multiplexed rtPCR is capable of detecting four to six nucleic acid targets in a single sample. However, advances in clinical medicine are driving the need to measure many more targets at once. We demonstrate a novel method which significantly increases the multiplexing capability of any existing rtPCR instrument without new hardware, software, or chemistry. The technique works by varying the relative TaqMan probe concentrations amongst targets that are measured in a single fluorometric channel. Our fluorescent amplitude modulation method generates a unique rtPCR signature for every combination of targets present in a reaction. We demonstrate this technique by measuring nine different targets across three color channels with TaqMan reporting probes, yielding a detection accuracy of 98.9% across all combinations of targets. In principle this method could be extended to measure 6 or more targets per color channel across any number of color channels without loss in specificity

    Variation in pre-PCR processing of FFPE samples leads to discrepancies in BRAF and EGFR mutation detection: a diagnostic RING trial.

    Get PDF
    Aims Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. Methods 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. Results Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p<0.0001), and yield variation from engineered samples was not significant (p=0.3782). Two laboratories failed DNA extraction from samples that may be attributed to operator error. DNA extraction protocols themselves were not found to contribute significant variation. 10/13 labs reported yields averaging 235.8ng (95% CI 90.7 to 380.9) from cell-negative samples, which was attributed to issues with spectrophotometry. DNA measurements using Qubit Fluorometry demonstrated a median fivefold overestimation of DNA quantity by Nanodrop Spectrophotometry. DNA integrity and PCR inhibition were factors not found to contribute significant variation. Conclusions In this study, we provide evidence demonstrating that variation in pre-PCR steps is prevalent and may detrimentally affect the patient's ability to receive critical therapy. We provide recommendations for preanalytical workflow optimisation that may reduce errors in down-stream sequencing and for next-generation sequencing library generation
    • …
    corecore