2 research outputs found

    Automating Spacecraft Analysis: The Era of Ontological Modeling & Simulation

    Get PDF
    Verification by analysis is a predicted compliance of a design to imposed requirements. The levels of performance specified by performance requirements can be related to Technical Performance Measures (TPM) in a Model-Based Systems Engineering (MBSE) environment, but engineers performing verification by analysis are not commonly versed in professional Systems Engineering (SE) techniques or modeling languages such as SysML. As the formal application of Systems Engineering (SE) results in a diminution of time, effort, and money for large-scale projects, enabling technical engineers performing verification by analysis to contribute to MBSE improvements in the course of their daily work is financially incentivized. Ontologies applied to technical analysis methodologies are shown to improve the quality of verification by analysis activities while adhering to professional organization standards such as the International Council on Systems Engineering (INCOSE) SE Handbook and the National Aeronautics and Space Administration (NASA) standard 7009A: Standard for Models and Simulations

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore