79 research outputs found

    Mathematical programming for piecewise linear regression analysis

    Get PDF
    In data mining, regression analysis is a computational tool that predicts continuous output variables from a number of independent input variables, by approximating their complex inner relationship. A large number of methods have been successfully proposed, based on various methodologies, including linear regression, support vector regression, neural network, piece-wise regression, etc. In terms of piece-wise regression, the existing methods in literature are usually restricted to problems of very small scale, due to their inherent non-linear nature. In this work, a more efficient piece-wise linear regression method is introduced based on a novel integer linear programming formulation. The proposed method partitions one input variable into multiple mutually exclusive segments, and fits one multivariate linear regression function per segment to minimise the total absolute error. Assuming both the single partition feature and the number of regions are known, the mixed integer linear model is proposed to simultaneously determine the locations of multiple break-points and regression coefficients for each segment. Furthermore, an efficient heuristic procedure is presented to identify the key partition feature and final number of break-points. 7 real world problems covering several application domains have been used to demonstrate the efficiency of our proposed method. It is shown that our proposed piece-wise regression method can be solved to global optimality for datasets of thousands samples, which also consistently achieves higher prediction accuracy than a number of state-of-the-art regression methods. Another advantage of the proposed method is that the learned model can be conveniently expressed as a small number of if-then rules that are easily interpretable. Overall, this work proposes an efficient rule-based multivariate regression method based on piece-wise functions and achieves better prediction performance than state-of-the-arts approaches. This novel method can benefit expert systems in various applications by automatically acquiring knowledge from databases to improve the quality of knowledge base

    Detection of Composite Communities in Multiplex Biological Networks

    Get PDF
    The detection of community structure is a widely accepted means of investigating the principles governing biological systems. Recent efforts are exploring ways in which multiple data sources can be integrated to generate a more comprehensive model of cellular interactions, leading to the detection of more biologically relevant communities. In this work, we propose a mathematical programming model to cluster multiplex biological networks, i.e. multiple network slices, each with a different interaction type, to determine a single representative partition of composite communities. Our method, known as SimMod, is evaluated through its application to yeast networks of physical, genetic and co-expression interactions. A comparative analysis involving partitions of the individual networks, partitions of aggregated networks and partitions generated by similar methods from the literature highlights the ability of SimMod to identify functionally enriched modules. It is further shown that SimMod offers enhanced results when compared to existing approaches without the need to train on known cellular interactions

    Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies

    Get PDF
    The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic

    Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu-Natal, South Africa

    Get PDF
    Between 1995 and 2000, KwaZulu–Natal province, South Africa, experienced a marked increase in Plasmodium falciparum malaria, fuelled by pyrethroid and sulfadoxine-pyrimethamine resistance. In response, vector control was strengthened and artemether-lumefantrine (AL) was deployed in the first Ministry of Health artemisinin-based combination treatment policy in Africa. In South Africa, effective vector and parasite control had historically ensured low-intensity malaria transmission. Malaria is diagnosed definitively and treatment is provided free of charge in reasonably accessible public-sector health-care facilities

    Effect of Artemether-Lumefantrine Policy and Improved Vector Control on Malaria Burden in KwaZulu–Natal, South Africa

    Get PDF
    BACKGROUND: Between 1995 and 2000, KwaZulu–Natal province, South Africa, experienced a marked increase in Plasmodium falciparum malaria, fuelled by pyrethroid and sulfadoxine-pyrimethamine resistance. In response, vector control was strengthened and artemether-lumefantrine (AL) was deployed in the first Ministry of Health artemisinin-based combination treatment policy in Africa. In South Africa, effective vector and parasite control had historically ensured low-intensity malaria transmission. Malaria is diagnosed definitively and treatment is provided free of charge in reasonably accessible public-sector health-care facilities. METHODS AND FINDINGS: We reviewed four years of malaria morbidity and mortality data at four sentinel health-care facilities within KwaZulu–Natal's malaria-endemic area. In the year following improved vector control and implementation of AL treatment, malaria-related admissions and deaths both declined by 89%, and outpatient visits decreased by 85% at the sentinel facilities. By 2003, malaria-related outpatient cases and admissions had fallen by 99%, and malaria-related deaths had decreased by 97%. There was a concomitant marked and sustained decline in notified malaria throughout the province. No serious adverse events were associated causally with AL treatment in an active sentinel pharmacovigilance survey. In a prospective study with 42 d follow up, AL cured 97/98 (99%) and prevented gametocyte developing in all patients. Consistent with the findings of focus group discussions, a household survey found self-reported adherence to the six-dose AL regimen was 96%. CONCLUSION: Together with concurrent strengthening of vector control measures, the antimalarial treatment policy change to AL in KwaZulu–Natal contributed to a marked and sustained decrease in malaria cases, admissions, and deaths, by greatly improving clinical and parasitological cure rates and reducing gametocyte carriage

    TIGIT blockade repolarizes AML-associated TIGIT(+) M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis

    Get PDF
    BACKGROUND: Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS: The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2a isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS: In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT(+) M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION: Our findings suggest that immunosuppressive TIGIT(+) M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed
    corecore