103 research outputs found

    Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: dimensionality crossover in a non-frustrated S=3/2 Heisenberg model

    Full text link
    The magnetism of magnetoelectric SS = 3/2 pyroxenes LiCrSi2_2O6_6 and LiCrGe2_2O6_6 is studied by density functional theory (DFT) calculations, quantum Monte Carlo (QMC) simulations, neutron diffraction, as well as low-field and high-field magnetization measurements. In contrast with earlier reports, we find that the two compounds feature remarkably different, albeit non-frustrated magnetic models. In LiCrSi2_2O6_6, two relevant exchange integrals, J1J_1 \simeq 9 K along the structural chains and Jic1J_{\text{ic1}} \simeq 2 K between the chains, form a 2D anisotropic honeycomb lattice. In contrast, the spin model of LiCrGe2_2O6_6 is constituted of three different exchange couplings. Surprisingly, the leading exchange Jic1J_{\text{ic1}} \simeq 2.3 K operates between the chains, while J1J_1 \simeq 1.2 K is about two times smaller. The additional interlayer coupling Jic2J_{\text{ic2}} \simeq J1J_1 renders this model 3D. QMC simulations reveal excellent agreement between our magnetic models and the available experimental data. Underlying mechanisms of the exchange couplings, magnetostructural correlations, as well as implications for other pyroxene systems are discussed.Comment: 11 pages, 8 figures, 3 tables + Supplementary informatio

    Frustration of square cupola in Sr(TiO)Cu4_{4}(PO4_{4})4_{4}

    Full text link
    The structural and magnetic properties of the square-cupola antiferromagnet Sr(TiO)Cu4_{4}(PO4_{4})4_{4} are investigated via x-ray diffraction, magnetization, heat capacity, and 31^{31}P nuclear magnetic resonance experiments on polycrystalline samples, as well as density-functional band-structure calculations. The temperature-dependent unit cell volume could be described well using the Debye approximation with the Debye temperature of θD\theta_{\rm D} \simeq 550~K. Magnetic response reveals a pronounced two-dimensionality with a magnetic long-range-order below TN6.2T_{\rm N} \simeq 6.2~K. High-field magnetization exhibits a kink at 1/31/3 of the saturation magnetization. Asymmetric 31^{31}P NMR spectra clearly suggest strong in-plane anisotropy in the magnetic susceptibility, as anticipated from the crystal structure. From the 31^{31}P NMR shift vs bulk susceptibility plot, the isotropic and axial parts of the hyperfine coupling between 31^{31}P nuclei and the Cu2+^{2+} spins are calculated to be Ahfiso6539A_{\rm hf}^{\rm iso} \simeq 6539 and Ahfax952A_{\rm hf}^{\rm ax} \simeq 952~Oe/μB\mu_{\rm B}, respectively. The low-temperature and low-field 31^{31}P NMR spectra indicate a commensurate antiferromagnetic ordering. Frustrated nature of the compound is inferred from the temperature-dependent 31^{31}P NMR spin-lattice relaxation rate and confirmed by our microscopic analysis that reveals strong frustration of the square cupola by next-nearest-neighbor exchange couplings.Comment: 11 pages, 13 figures, 1 table, Phys. Rev. B (Accepted, 2018

    Collinear order in a frustrated three-dimensional spin-12\frac12 antiferromagnet Li2_2CuW2_2O8_8

    Full text link
    Magnetic frustration in three dimensions (3D) manifests itself in the spin-12\frac12 insulator Li2_2CuW2_2O8_8. Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature TN3.9T_N\simeq 3.9 K. Magnetic order below TNT_N is collinear with the propagation vector (0,12,0)(0,\frac12,0) and an ordered moment of 0.65(4) μB\mu_B according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R0.35C^{\max}/R\simeq 0.35) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play crucial role in this system, where a non-collinear spiral state would be stabilized classically.Comment: published version with supplemental material merged into the tex

    Singlet ground state in the alternating spin-1/21/2 chain compound NaVOAsO4_4

    Full text link
    We present the synthesis and a detailed investigation of structural and magnetic properties of polycrystalline NaVOAsO4_4 by means of x-ray diffraction, magnetization, electron spin resonance (ESR), and 75^{75}As nuclear magnetic resonance (NMR) measurements as well as density-functional band structure calculations. Temperature-dependent magnetic susceptibility, ESR intensity, and NMR line shift could be described well using an alternating spin-1/21/2 chain model with the exchange coupling J/kB52J/k_{\rm B}\simeq 52 K and an alternation parameter α0.65\alpha \simeq 0.65. From the high-field magnetic isotherm measured at T=1.5T=1.5 K, the critical field of the gap closing is found to be Hc16 H_{\rm c}\simeq 16 T, which corresponds to the zero-field spin gap of Δ0/kB21.4\Delta_0/k_{\rm B}\simeq 21.4 K. Both NMR shift and spin-lattice relaxation rate show an activated behavior at low temperatures, further confirming the singlet ground state. The spin chains do not coincide with the structural chains, whereas the couplings between the spin chains are frustrated. Because of a relatively small spin gap, NaVOAsO4_4 is a promising compound for further experimental studies under high magnetic fields.Comment: 14 pages, 10 figures, 2 table

    Antiferromagnetism of Zn2_2VO(PO4)2_4)_2 and the dilution with Ti4+^{4+}

    Full text link
    We report static and dynamic properties of the antiferromagnetic compound Zn2_{2}(VO)(PO4_{4})2_{2}, and the consequences of non-magnetic Ti4+^{4+} doping at the V4+^{4+} site. 31^{31}P nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T11/T_1) consistently show the formation of the long-range antiferromagnetic order below TN=3.83.9T_N= 3.8-3.9\,K. The critical exponent β=0.33±0.02\beta=0.33 \pm 0.02 estimated from the temperature dependence of the sublattice magnetization measured by 31^{31}P NMR at 9.4\,MHz is consistent with universality classes of three-dimensional spin models. The isotropic and axial hyperfine couplings between the 31^{31}P nuclei and V4+^{4+} spins are Ahfiso=(9221±100)A_{\rm hf}^{\rm iso} = (9221 \pm 100) Oe/μB\mu_{\rm B} and Ahfax=(1010±50)A_{\rm hf}^{\rm ax} = (1010 \pm 50) Oe/μB\mu_{\rm B}, respectively. Magnetic susceptibility data above 6.5\,K and heat capacity data above 4.5\,K are well described by quantum Monte-Carlo simulations for the Heisenberg model on the square lattice with J7.7J\simeq 7.7\,K. This value of JJ is consistent with the values obtained from the NMR shift, 1/T11/T_1 and electron spin resonance (ESR) intensity analysis. Doping Zn2_2VO(PO4)2_4)_2 with non-magnetic Ti4+^{4+} leads to a marginal increase in the JJ value and the overall dilution of the spin lattice. In contrast to the recent \textit{ab initio} results, we find neither evidence for the monoclinic structural distortion nor signatures of the magnetic one-dimensionality for doped samples with up to 15\% of Ti4+^{4+}. The N\'eel temperature TNT_{\rm N} decreases linearly with increasing the amount of the non-magnetic dopant.Comment: 13 pages, 12 figures, 2 table

    Peculiar long-range superexchange in Cu2A2O7 (A = P, As, V) as a key element of the microscopic magnetic model

    Full text link
    A microscopic magnetic model for alpha-Cu2P2O7 is evaluated in a combined theoretical and experimental study. Despite a dominant intradimer coupling J1, sizable interdimer couplings enforce long-range magnetic ordering at T_N=27 K. The spin model for alpha-Cu2P2O7 is compared to the models of the isostructural beta-Cu2V2O7 and alpha-Cu2As2O7 systems. As a surprise, coupled dimers in alpha-Cu2P2O7 and alternating chains in alpha-Cu2As2O7 contrast with a honeycomb lattice in beta-Cu2V2O7. We find that the qualitative difference in the coupling regime of these isostructural compounds is governed by the nature of AO4 side groups: d-elements (A = V) hybridize with nearby O atoms forming a Cu-O-A-O-Cu superexchange path, while for p-elements (A = P, As) the superexchange is realized via O-O edges of the tetrahedron. Implications for a broad range of systems are discussed.Comment: 8 pages, 5 figures, 1 table; discussion extende

    Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures

    Get PDF
    Generation of very low temperatures has been crucially important for applications and fundamental research, as low-temperature quantum coherence enables operation of quantum computers and formation of exotic quantum states, such as superfluidity and superconductivity. One of the major techniques to reach milli-Kelvin temperatures is adiabatic demagnetization refrigeration (ADR). This method uses almost non-interacting magnetic moments of paramagnetic salts where large distances suppress interactions between the magnetic ions. The large spatial separations are facilitated by water molecules, with a drawback of reduced stability of the material. Here, we show that an H2_2O-free frustrated magnet KBaYb(BO3_3)2_2 can be ideal refrigerant for ADR, achieving at least 22\,mK upon demagnetization under adiabatic conditions. Compared to conventional refrigerants, KBaYb(BO3)2_3)_2 does not degrade even under high temperatures and ultra-high vacuum conditions. Further, its frustrated magnetic network and structural randomness enable cooling to temperatures several times lower than the energy scale of magnetic interactions, which is the main limiting factor for the base temperature of conventional refrigerants.Comment: accepted for publication in Communications Material

    Signatures of van Hove singularities in the anisotropic in-plane optical conductivity of the topological semimetal Nb3_3SiTe6_6

    Full text link
    We present a temperature-dependent infrared spectroscopy study on the layered topological semimetal Nb3_3SiTe6_6 combined with density-functional theory (DFT) calculations of the electronic band structure and optical conductivity. Our results reveal an anisotropic behavior of the in-plane (acac-plane) optical conductivity, with three pronounced excitations located at around 0.15, 0.28, and 0.41~eV for the polarization of the incident radiation along the cc axis. These excitations are well reproduced in the theoretical spectra. Based on the \textit{ab initio} results, the excitations around 0.15 eV and 0.28 eV are interpreted as fingerprints of van Hove singularities in the electronic band structure and compared to the findings for other topological semimetals.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Two types of alternating spin-12\frac12 chains and their field-induced transitions in ε\varepsilon-LiVOPO4_4

    Full text link
    Thermodynamic properties, 31^{31}P nuclear magnetic resonance (NMR) measurements, and density-functional band-structure calculations for ε\varepsilon-LiVOPO4_4 are reported. This quantum magnet features a singlet ground state and comprises two types of alternating spin-12\frac12 chains that manifest themselves by the double maxima in the susceptibility and magnetic specific heat, and by the two-step magnetization process with an intermediate 12\frac12-plateau. From thermodynamic data and band-structure calculations, we estimate the leading couplings of J120J_1\simeq 20 K and J260J_2\simeq 60 K and the alternation ratios of α1=J1/J10.6\alpha_1=J_1'/J_1\simeq 0.6 and α2=J2/J20.3\alpha_2=J_2'/J_2\simeq 0.3 within the two chains, respectively. The zero-field spin gap Δ0/kB7.3\Delta_0/k_{\rm B}\simeq 7.3 K probed by thermodynamic and NMR measurements is caused by the J1J_1-J1J_1' spin chains and can be closed in the applied field of μ0Hc15.6\mu_{0}H_{\rm c1}\simeq 5.6 T, giving rise to a field-induced long-range order. The NMR data reveal predominant three-dimensional spin-spin correlations at low temperatures. Field-induced magnetic ordering transition observed above Hc1H_{c1} is attributed to the Bose-Einstein condensation of triplons in the sublattice formed by the J1J_1-J1J_1' chains with weaker exchange couplings.Comment: 14 pages, 14 figure
    corecore