56 research outputs found
The Association of Cardiometabolic, Diet and Lifestyle Parameters With Plasma Glucagon-like Peptide-1: An IMI DIRECT Study
\ua9 The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society.Context: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. Objective: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. Methods: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. Results: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. Conclusion: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity
Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activityAntimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.The authors thank T.T. Diagana (Novartis Institute for Tropical Diseases, Singapore) for provision of the compounds, the Red Cross (Australia and the USA) for the provision of human blood for cell cultures, and G. Stevenson for assistance with the triaging of compounds following screening. The authors acknowledge the Bill and Melinda Gates Foundation (grant OPP1040399 to D.A.F. and V.M.A. and grant OPP1054480 to E.A.W. and D.A.F.), the National Institutes of Health (grant R01 AI103058 to E.A.W. and D.A.F., grant R01 AI50234 to D.A.F, and R01 AI110329 to T.J.E.), the Australian Research Council (LP120200557 to V.M.A.) and the Medicines for Malaria Venture for their continued support. P.E.F. and M.I.V. are supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio
Defining Membrane Protein Topology Using pho-lac Reporter Fusions
International audienceExperimental determination of membrane protein topology can be achieved using various techniques. Here we present the pho-lac dual reporter system, a simple, convenient, and reliable tool to analyze the topology of membrane proteins in vivo. The system is based on the use of two topological markers with complementary properties, the Escherichia coli β-galactosidase LacZ, which is active in the cytoplasm, and the E. coli alkaline phosphatase PhoA, which is active in the bacterial periplasm. Specifically, in this pho-lac gene system, the reporter molecule is a chimera composed of the mature PhoA that is in frame with the β-galactosidase α-peptide, LacZα. Hence, when targeted to the periplasm, the PhoA-LacZα dual reporter displays high alkaline phosphatase activity but no β-galactosidase activity. Conversely, when located in the cytoplasm, PhoA-LacZα has no phosphatase activity but exhibits high β-galactosidase activity in E. coli cells expressing the ω fragment of LacZ, LacZω (via the α-complementation phenomenon). The dual nature of the PhoA- LacZα reporter allows a simple way to normalize both enzymatic activities to obtain readily interpretable information about the subcellular location of the fusion site between the membrane protein under study and the reporter. In addition, the PhoA-LacZα reporter permits utilization of dual-indicator agar plates to easily discriminate between colonies bearing cytoplasmic fusions, periplasmic fusions, or out-of-frame fusions. In total, the phoA-lacZα fusion reporter approach is a straightforward and rather inexpensive method of characterizing the topology of membrane proteins in vivo
- …