40 research outputs found

    Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data

    Full text link
    Comment on ``Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data'' [arXiv:0804.2958]Comment: Published in at http://dx.doi.org/10.1214/07-STS227B the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient estimation of the distribution of time to composite endpoint when some endpoints are only partially observed.

    No full text
    Two common features of clinical trials, and other longitudinal studies, are (1) a primary interest in composite endpoints, and (2) the problem of subjects withdrawing prematurely from the study. In some settings, withdrawal may only affect observation of some components of the composite endpoint, for example when another component is death, information on which may be available from a national registry. In this paper, we use the theory of augmented inverse probability weighted estimating equations to show how such partial information on the composite endpoint for subjects who withdraw from the study can be incorporated in a principled way into the estimation of the distribution of time to composite endpoint, typically leading to increased efficiency without relying on additional assumptions above those that would be made by standard approaches. We describe our proposed approach theoretically, and demonstrate its properties in a simulation study

    Independent increments in group sequential tests : a review

    Get PDF
    In order to apply group sequential methods for interim analysis for early stopping in clinical trials, the joint distribution of test statistics over time has to be known. Often the distribution is multivariate normal or asymptotically so, and an application of group sequential methods requires multivariate integration to determine the group sequential boundaries. However, if the increments between successive test statistics are independent, the multivariate integration reduces to a univariate integration involving simple recursion based on convolution. This allows application of standard group sequential methods. In this paper we review group sequential methods and the development that established independent increments in test statistics for the primary outcomes of longitudinal or failure time data

    Using Auxiliary Time-Dependent Covariates to Recover Information in Nonparametric Testing with Censored Data

    Full text link
    Murrayand Tsiatis (1996) described a weighted survival estimate thatincorporates prognostic time-dependent covariate informationto increase the efficiency of estimation. We propose a test statisticbased on the statistic of Pepe and Fleming (1989, 1991) thatincorporates these weighted survival estimates. As in Pepe andFleming, the test is an integrated weighted difference of twoestimated survival curves. This test has been shown to be effectiveat detecting survival differences in crossing hazards settingswhere the logrank test performs poorly. This method uses stratifiedlongitudinal covariate information to get more precise estimatesof the underlying survival curves when there is censored informationand this leads to more powerful tests. Another important featureof the test is that it remains valid when informative censoringis captured by the incorporated covariate. In this case, thePepe-Fleming statistic is known to be biased and should not beused. These methods could be useful in clinical trials with heavycensoring that include collection over time of covariates, suchas laboratory measurements, that are prognostic of subsequentsurvival or capture information related to censoring.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46839/1/10985_2004_Article_335514.pd

    Estimating optimal treatment regimes from a classification perspective

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135136/1/sta4124.pd

    Data and Safety Monitoring of COVID-19 Vaccine Clinical Trials

    Get PDF
    To speed the development of vaccines against SARS-CoV-2, the United States Federal Government has funded multiple phase 3 trials of candidate vaccines. A single 11-member data and safety monitoring board (DSMB) monitors all government-funded trials to ensure coordinated oversight, promote harmonized designs, and allow shared insights related to safety across trials. DSMB reviews encompass 3 domains: (1) the conduct of trials, including overall and subgroup accrual and data quality and completeness; (2) safety, including individual events of concern and comparisons by randomized group; and (3) interim analyses of efficacy when event-driven milestones are met. Challenges have included the scale and pace of the trials, the frequency of safety events related to the combined enrollment of over 100 000 participants, many of whom are older adults or have comorbid conditions that place them at independent risk of serious health events, and the politicized environment in which the trials have taken place

    Semiparametric Theory and Missing Data

    No full text
    Missing data arise in almost all scientific disciplines. In many cases, missing data in an analysis is treated in a casual and ad-hoc manner, leading to invalid inferences and erroneous conclusions. This book summarizes knowledge regarding the theory of estimation for semiparametric models with missing data
    corecore