6 research outputs found

    Electron emission from deep level defects EL2 and EL6 in semi-insulating GaAs observed by positron drift velocity transient measurements

    Get PDF
    A ±100 V square wave applied to a Au/semi-insulating SI-GaAs interface was used to bring about electron emission from and capture into deep level defects in the region adjacent to the interface. The electric field transient resulting from deep level emission was studied by monitoring the positron drift velocity in the region. A deep level transient spectrum was obtained by computing the trap emission rate as a function of temperature and two peaks corresponding to EL2 (E a=0.81±0.15 eV) and EL6 (E a=0.30±0.12 eV) have been identified. © 2002 American Institute of Physics.published_or_final_versio

    All-passive pixel super-resolution of time-stretch imaging

    Get PDF
    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (approx. 2--5 GSa/s) --- more than four times lower than the originally required readout rate (20 GSa/s) --- is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time- stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.Comment: 17 pages, 8 figure

    The Immunology of Breast Cancer

    No full text
    corecore