7 research outputs found

    Comparative Analysis of Predictive Models for Fine Particulate Matter in Daejeon, South Korea

    No full text
    Air pollution is a critical problem that is of major concern worldwide. South Korea is one of the countries most affected by air pollution. Rapid urbanization and industrialization in South Korea have induced air pollution in multiple forms, such as smoke from factories and exhaust from vehicles. In this paper, we perform a comparative analysis of predictive models for fine particulate matter in Daejeon, the fifth largest city in South Korea. This study is conducted for three purposes. The first purpose is to determine the factors that may cause air pollution. Two main factors are considered: meteorological and traffic. The second purpose is to find an optimal predictive model for air pollutant concentration. We apply machine learning and deep learning models to the collected dataset to predict hourly air pollutant concentrations. The accuracy of the deep learning models is better than that of the machine learning models. The third purpose is to analyze the influence of road conditions on predicting air pollutant concentration. Experimental results demonstrate that considering wind direction and wind speed could significantly decrease the error rate of the predictive models

    Incremental Density-Based Clustering with Grid Partitioning (Student Abstract)

    No full text
    DBSCAN is widely used in various fields, but it requires computational costs similar to those of re-clustering from scratch to update clusters when new data is inserted. To solve this, we propose an incremental density-based clustering method that rapidly updates clusters by identifying in advance regions where cluster updates will occur. Also, through extensive experiments, we show that our method provides clustering results similar to those of DBSCAN

    Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea

    No full text
    Ensemble deep learning methods have demonstrated significant improvements in forecasting the solar panel power generation using historical time-series data. Although many studies have used ensemble deep learning methods with various data partitioning strategies, most have only focused on improving the predictive methods by associating several different models or combining hyperparameters and interactions. In this study, we contend that we can enhance the precision of power generation forecasting by identifying a suitable data partition strategy and establishing the ideal number of partitions and subset sizes. Thus, we propose a feasibility study of the influence of data partition strategies on ensemble deep learning. We selected five time-series data partitioning strategies—window, shuffle, pyramid, vertical, and seasonal—that allow us to identify different characteristics and features in the time-series data. We conducted various experiments on two sources of solar panel datasets collected in Seoul and Gyeongju, South Korea. Additionally, LSTM-based bagging ensemble models were applied to combine the advantages of several single LSTM models. The experimental results reveal that the data partition strategies positively influence the forecasting of power generation. Specifically, the results demonstrate that ensemble models with data partition strategies outperform single LSTM models by approximately 4–11% in terms of the coefficient of determination (R2) score

    SCE-LSTM: Sparse Critical Event-Driven LSTM Model with Selective Memorization for Agricultural Time-Series Prediction

    No full text
    In the domain of agricultural product sales and consumption forecasting, the presence of infrequent yet impactful events such as livestock epidemics and mass media influences poses substantial challenges. These rare occurrences, termed Sparse Critical Events (SCEs), often lead to predictions converging towards average values due to their omission from input candidate vectors. To address this issue, we introduce a modified Long Short-Term Memory (LSTM) model designed to selectively attend to and memorize critical events, emulating the human memory’s ability to retain crucial information. In contrast to the conventional LSTM model, which struggles with learning sparse critical event sequences due to its handling of forget gates and input vectors within the cell state, our proposed approach identifies and learns from sparse critical event sequences during data training. This proposed method, referred to as sparse critical event-driven LSTM (SCE-LSTM), is applied to predict purchase quantities of agricultural and livestock products using sharp-changing agricultural time-series data. For these predictions, we collected structured and unstructured data spanning the years 2010 to 2017 and developed the SCE-LSTM prediction model. Our model forecasts monetary expenditures for pork purchases over a one-month horizon. Notably, our results demonstrate that SCE-LSTM provides the closest predictions to actual daily pork purchase expenditures and exhibits the lowest error rates when compared to other prediction models. SCE-LSTM emerges as a promising solution to enhance agricultural product sales and consumption forecasts, particularly in the presence of rare critical events. Its superior performance and accuracy, as evidenced by our findings, underscore its potential significance in this domain

    Prediction of Process Quality Performance Using Statistical Analysis and Long Short-Term Memory

    No full text
    In the manufacturing industry, the process capability index (Cpk) measures the level and capability required to improve the processes. However, the Cpk is not enough to represent the process capability and performance of the manufacturing processes. In other words, considering that the smart manufacturing environment can accommodate the big data collected from various facilities, we need to understand the state of the process by comprehensively considering diverse factors contained in the manufacturing. In this paper, a two-stage method is proposed to analyze the process quality performance (PQP) and predict future process quality. First, we propose the PQP as a new measure for representing process capability and performance, which is defined by a composite statistical process analysis of such factors as manufacturing cycle time analysis, process trajectory of abnormal detection, statistical process control analysis, and process capability control analysis. Second, PQP analysis results are used to predict and estimate the stability of the production process using a long short-term memory (LSTM) neural network, which is a deep learning algorithm-based method. The present work compares the LSTM prediction model with the random forest, autoregressive integrated moving average, and artificial neural network models to convincingly demonstrate the effectiveness of our proposed approach. Notably, the LSTM model achieved higher accuracy than the other models

    Generation of Time-Series Working Patterns for Manufacturing High-Quality Products through Auxiliary Classifier Generative Adversarial Network

    No full text
    Product quality is a major concern in manufacturing. In the metal processing industry, low-quality products must be remanufactured, which requires additional labor, money, and time. Therefore, user-controllable variables for machines and raw material compositions are key factors for ensuring product quality. In this study, we propose a method for generating the time-series working patterns of the control variables for metal-melting induction furnaces and continuous casting machines, thus improving product quality by aiding machine operators. We used an auxiliary classifier generative adversarial network (AC-GAN) model to generate time-series working patterns of two processes depending on product type and additional material data. To check accuracy, the difference between the generated time-series data of the model and the ground truth data was calculated. Specifically, the proposed model results were compared with those of other deep learning models: multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU). It was demonstrated that the proposed model outperformed the other deep learning models. Moreover, the proposed method generated different time-series data for different inputs, whereas the other deep learning models generated the same time-series data

    Prediction of Process Quality Performance Using Statistical Analysis and Long Short-Term Memory

    No full text
    In the manufacturing industry, the process capability index (Cpk) measures the level and capability required to improve the processes. However, the Cpk is not enough to represent the process capability and performance of the manufacturing processes. In other words, considering that the smart manufacturing environment can accommodate the big data collected from various facilities, we need to understand the state of the process by comprehensively considering diverse factors contained in the manufacturing. In this paper, a two-stage method is proposed to analyze the process quality performance (PQP) and predict future process quality. First, we propose the PQP as a new measure for representing process capability and performance, which is defined by a composite statistical process analysis of such factors as manufacturing cycle time analysis, process trajectory of abnormal detection, statistical process control analysis, and process capability control analysis. Second, PQP analysis results are used to predict and estimate the stability of the production process using a long short-term memory (LSTM) neural network, which is a deep learning algorithm-based method. The present work compares the LSTM prediction model with the random forest, autoregressive integrated moving average, and artificial neural network models to convincingly demonstrate the effectiveness of our proposed approach. Notably, the LSTM model achieved higher accuracy than the other models
    corecore