7,700 research outputs found

    Topical application of hyaluronic acid-RGD peptide-coated gelatin/epigallocatechin-3 gallate (EGCG) nanoparticles inhibits corneal neovascularization via inhibition of VEGF production

    Get PDF
    Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV

    Precise Particle Tracking Against a Complicated Background: Polynomial Fitting with Gaussian Weight

    Full text link
    We present a new particle tracking software algorithm designed to accurately track the motion of low-contrast particles against a background with large variations in light levels. The method is based on a polynomial fit of the intensity around each feature point, weighted by a Gaussian function of the distance from the centre, and is especially suitable for tracking endogeneous particles in the cell, imaged with bright field, phase contrast or fluorescence optical microscopy. Furthermore, the method can simultaneously track particles of all different sizes, and allows significant freedom in their shape. The algorithm is evaluated using the quantitative measures of accuracy and precision of previous authors, using simulated images at variable signal-to-noise ratios. To these we add a new test of the error due to a non-uniform background. Finally the tracking of particles in real cell images is demonstrated. The method is made freely available for non-commencial use as a software package with a graphical user-inferface, which can be run within the Matlab programming environment

    Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy

    Get PDF
    The temperature effect on the mechanical behavior of the HfNbTaTiZr high entropy alloy (HEA) was investigated at 77–673 K. The decrease of the yield strength with increasing the temperature was mechanistically analyzed by considering contributions from various strengthening mechanisms. An anomalous dependence of strain hardening on temperature was observed and was justified to be caused by dynamic strain aging (DSA) as an extra strengthening mechanism at elevated temperatures. A model was constructed to split the overall strain hardening into forest hardening and DSA hardening, both of which were theoretically quantified at all temperatures considered. The work quantifies the height of Peierls barriers in the bcc HfNbTaTiZr HEA, and reveals dynamic strain aging as the strengthening mechanism causing the anomalous strain hardening at elevated temperatures

    Contralateral Cerebro-Cerebellar White Matter Pathways for Verbal Working Memory: A Combined Diffusion Spectrum Imaging and fMRI Study

    Get PDF
    Diffusion spectrum imaging was employed to establish structural connectivity between cerebro-cerebellar regions co-activated during verbal working memory. IFG, IPL, pons, thalamus, superior cerebellum and inferior cerebellum were used as seed points to reconstruct the white matter cerebro-cerebellar circuitry. The reconstructed pathways were examined further to establish the relationship between structural and effective connectivity as well as the relationship between structural connectivity and verbal working memory performance. It was found that structural connectivity is indirectly related to effective connectivity but does not predict it. Additionally, it was demonstrated that the integrity of the ponto-cerebellar tract is an important factor in explaining individual differences in verbal working memory. The findings of the study furthered our understanding of the relationship between structural and functional connectivity and provided insight to the variability in verbal working memory performance

    Infrared Spectroscopy of Quantum Crossbars

    Full text link
    Infrared (IR) spectroscopy can be used as an important and effective tool for probing periodic networks of quantum wires or nanotubes (quantum crossbars, QCB) at finite frequencies far from the Luttinger liquid fixed point. Plasmon excitations in QCB may be involved in resonance diffraction of incident electromagnetic waves and in optical absorption in the IR part of the spectrum. Direct absorption of external electric field in QCB strongly depends on the direction of the wave vector q.{\bf q}. This results in two types of 1D→2D1D\to 2D dimensional crossover with varying angle of an incident wave or its frequency. In the case of QCB interacting with semiconductor substrate, capacitive contact between them does not destroy the Luttinger liquid character of the long wave QCB excitations. However, the dielectric losses on a substrate surface are significantly changed due to appearance of additional Landau damping. The latter is initiated by diffraction processes on QCB superlattice and manifests itself as strong but narrow absorption peaks lying below the damping region of an isolated substrate.SubmiComment: Submitted to Phys. Rev.
    • …
    corecore