7,152 research outputs found

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    Laser pulse annealing of ion-implanted GaAs

    Get PDF
    GaAs single-crystals wafers are implanted at room temperature with 400-keV Te + ions to a dose of 1×10^15 cm^–2 to form an amorphous surface layer. The recrystallization of this layer is investigated by backscattering spectrometry and transmission electron microscopy after transient annealing by Q-switched ruby laser irradiation. An energy density threshold of about 1.0 J/cm^2 exists above which the layer regrows epitaxially. Below the threshold the layer is polycrystalline; the grain size increases as the energy density approaches threshold. The results are analogous to those reported for the elemental semiconductors, Si and Ge. The threshold value observed is in good agreement with that predicted by the simple model successfully applied previously to Si and Ge

    Production of large-particle-size monodisperse latexes

    Get PDF
    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization

    On Analytic Properties of the Photon Polarization Function in a Background Magnetic Field

    Full text link
    We examine the analytic properties of the photon polarization function in a background magnetic field, using the technique of inverse Mellin transform. The photon polarization function is first expressed as a power series of the photon energy ω\omega with ω<2me\omega< 2m_e. Based upon this energy expansion and the branch cut of the photon polarization function in the complex ω\omega plane, we compute the absorptive part of the polarization function with the inverse Mellin transform. Our results are valid for arbitrary photon energies and magnetic-field strengths. The applications of our approach are briefly discussed.Comment: Revtex, 8 pages; Eq. (33) corrected, results of the paper not affecte

    Prospect of determining the Dirac/Majorana state of neutrino by Multi-OWL experiment

    Full text link
    We consider the non-radiative two body decay of a neutrino to a daughter neutrino with degraded energy and a very light particle (Majoron). Ultrahigh energy neutrinos from an astrophysical source like a Gamma Ray Burst undergoing this decay process are found to produce different number of events in the detector depending on whether they are Majorana or Dirac particles. The next generation large scale experiments like Multi-OWL is expected to provide us an accurate determination of the flux of neutrinos from astrophysical sources and this may enable us to distinguish between the Dirac and Majorana nature of neutrino.Comment: 18 pages latex, no figure. Journal of Phys. G in pres
    corecore