8,055 research outputs found
Analysis of two-body decays of charmed baryons using the quark-diagram scheme
We give a general formulation of the quark diagram scheme for the nonleptonic weak decays of baryons. We apply it to all decays of the antitriplet and sextet charmed baryons and express their decay amplitudes in terms of the quark-diagram amplitudes, including the effects of final-state interactions. (We also point out the mistaken results in the literature.) We obtain many relations among various decay modes. It will be interesting to test them in future experiments
Microstructure of the juvenile sheep aortic valve hinge region and the trilamellar sliding hypothesis.
Background: The aortic valve mechanism performs extremely sophisticated functions which depend on the microstructure of its component parts. The hinge mechanism of the aortic leaflets plays a crucial part in the overall function. However, the detailed microstructure and its relation to function has not been adequately studied. Methods: The aortic roots of juvenile sheep were fixed under physiologic pressure. Sections through all three sinuses were then performed to illustrate the microstructure of the hinge mechanism in different regions of the aortic root. Results: The hinge region in the different sinuses showed unique microstructure with a trilamellar topology with a dominant core consisting of glycosaminoglycans. The exact arrangement of the trilamellar structures varies around the aortic sinuses, which could have functional implications. These features allow the hinge to perform its complex functions through what we have described as "the trilamellar sliding hypothesis". Conclusion: The microstructure of the hinge mechanism is unique and enables it to perform it sophisticated functions
Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants
The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America
Precise Particle Tracking Against a Complicated Background: Polynomial Fitting with Gaussian Weight
We present a new particle tracking software algorithm designed to accurately
track the motion of low-contrast particles against a background with large
variations in light levels. The method is based on a polynomial fit of the
intensity around each feature point, weighted by a Gaussian function of the
distance from the centre, and is especially suitable for tracking endogeneous
particles in the cell, imaged with bright field, phase contrast or fluorescence
optical microscopy. Furthermore, the method can simultaneously track particles
of all different sizes, and allows significant freedom in their shape. The
algorithm is evaluated using the quantitative measures of accuracy and
precision of previous authors, using simulated images at variable
signal-to-noise ratios. To these we add a new test of the error due to a
non-uniform background. Finally the tracking of particles in real cell images
is demonstrated. The method is made freely available for non-commencial use as
a software package with a graphical user-inferface, which can be run within the
Matlab programming environment
White matter integrity in physically fit older adults
Background: White matter (WM) integrity declines with normal aging. Physical activity may attenuate age-related WM integrity changes and improve cognitive function. This study examined brain WM integrity in Masters athletes who have engaged in life-long aerobic exercise training. We tested the hypothesis that life-long aerobic training is associated with improved brain WM integrity in older adults. Methods: Ten Masters athletes (3 females, age = 72.2 ± 5.3 years, endurance training \u3e15 years) and 10 sedentary older adults similar in age and educational level (2 females, age = 74.5 ± 4.3 years) participated. MRI fluid-attenuated-inversion-recovery (FLAIR) images were acquired to assess white matter hyperintensities (WMH) volume. Diffusion tensor imaging (DTI) was performed to evaluate the WM microstructural integrity with a DTI-derived metric, fractional anisotropy (FA) and mean diffusivity (MD). Results: After normalization to whole-brain volume, Masters athletes showed an 83% reduction in deep WMH volume relative to their sedentary counterparts (0.05 ± 0.05% vs. 0.29 ± 0.29%, p b 0.05). In addition, we found an inverse relationship between aerobic fitness (VO2max) and deep WMH volume (r = −0.78, p \u3c 0.001). Using TBSS, Masters athletes showed higher FA values in the right superior corona radiata (SCR), both sides of superior longitudinal fasciculus (SLF), right inferior fronto-occipital fasciculus (IFO), and left inferior longitudinal fasciculus (ILF). In addition, Masters athletes also showed lower MD values in the left posterior thalamic radiation (PTR) and left cingulum hippocampus. Conclusions: These findings suggest that life-long exercise is associated with reducedWMH and may preserveWM fiber microstructural integrity related to motor control and coordination in older adults
White matter integrity in physically fit older adults
Background: White matter (WM) integrity declines with normal aging. Physical activity may attenuate age-related WM integrity changes and improve cognitive function. This study examined brain WM integrity in Masters athletes who have engaged in life-long aerobic exercise training. We tested the hypothesis that life-long aerobic training is associated with improved brain WM integrity in older adults. Methods: Ten Masters athletes (3 females, age = 72.2 ± 5.3 years, endurance training \u3e15 years) and 10 sedentary older adults similar in age and educational level (2 females, age = 74.5 ± 4.3 years) participated. MRI fluid-attenuated-inversion-recovery (FLAIR) images were acquired to assess white matter hyperintensities (WMH) volume. Diffusion tensor imaging (DTI) was performed to evaluate the WM microstructural integrity with a DTI-derived metric, fractional anisotropy (FA) and mean diffusivity (MD). Results: After normalization to whole-brain volume, Masters athletes showed an 83% reduction in deep WMH volume relative to their sedentary counterparts (0.05 ± 0.05% vs. 0.29 ± 0.29%, p b 0.05). In addition, we found an inverse relationship between aerobic fitness (VO2max) and deep WMH volume (r = −0.78, p \u3c 0.001). Using TBSS, Masters athletes showed higher FA values in the right superior corona radiata (SCR), both sides of superior longitudinal fasciculus (SLF), right inferior fronto-occipital fasciculus (IFO), and left inferior longitudinal fasciculus (ILF). In addition, Masters athletes also showed lower MD values in the left posterior thalamic radiation (PTR) and left cingulum hippocampus. Conclusions: These findings suggest that life-long exercise is associated with reducedWMH and may preserveWM fiber microstructural integrity related to motor control and coordination in older adults
Infrared Spectroscopy of Quantum Crossbars
Infrared (IR) spectroscopy can be used as an important and effective tool for
probing periodic networks of quantum wires or nanotubes (quantum crossbars,
QCB) at finite frequencies far from the Luttinger liquid fixed point. Plasmon
excitations in QCB may be involved in resonance diffraction of incident
electromagnetic waves and in optical absorption in the IR part of the spectrum.
Direct absorption of external electric field in QCB strongly depends on the
direction of the wave vector This results in two types of
dimensional crossover with varying angle of an incident wave or its frequency.
In the case of QCB interacting with semiconductor substrate, capacitive contact
between them does not destroy the Luttinger liquid character of the long wave
QCB excitations. However, the dielectric losses on a substrate surface are
significantly changed due to appearance of additional Landau damping. The
latter is initiated by diffraction processes on QCB superlattice and manifests
itself as strong but narrow absorption peaks lying below the damping region of
an isolated substrate.SubmiComment: Submitted to Phys. Rev.
PTH1-34 Alleviates RadioTherapy-Induced Local Bone Loss by Improving Osteoblast and Osteocyte Survival
Cancer radiotherapy is often complicated by a spectrum of changes in the neighboring bone from mild osteopenia to osteoradionecrosis. We previously reported that parathyroid hormone (PTH, 1-34), an anabolic agent for osteoporosis, reversed bone structural deterioration caused by multiple microcomputed tomography (microCT) scans in adolescent rats. To simulate clinical radiotherapy for cancer patients and to search for remedies, we focally irradiated the tibial metaphyseal region of adult rats with a newly available small animal radiation research platform (SARRP) and treated these rats with intermittent injections of PTH1-34. Using a unique 3D image registration method that we recently developed, we traced the local changes of the same trabecular bone before and after treatments, and observed that, while radiation caused a loss of small trabecular elements leading to significant decreases in bone mass and strength, PTH1-34 preserved all trabecular elements in irradiated bone with remarkable increases in bone mass and strength. Histomorphometry demonstrated that SARRP radiation severely reduced osteoblast number and activity, which were impressively reversed by PTH treatment. In contrast, suppressing bone resorption by alendronate failed to rescue radiation-induced bone loss and to block the rescue effect of PTH1-34. Furthermore, histological analyses revealed that PTH1-34 protected osteoblasts and osteocytes from radiation-induced apoptosis and attenuated radiation-induced bone marrow adiposity. Taken together, our data strongly support a robust radioprotective effect of PTH on trabecular bone integrity through preserving bone formation and shed light on further investigations of an anabolic therapy for radiation-induced bone damage. © 2014 Elsevier Inc
Food Frequency Questionnaires and Overnight Urines Are Valid Indicators of Daidzein and Genistein Intake in U.S. Women Relative to Multiple 24-h Urine Samples
Data regarding convenient, valid methods for measuring U.S. isoflavone intake are limited. We evaluated a soy food questionnaire (SFQ), the Willett food frequency questionnaire (FFQ), and overnight urine samples relative to excretion in 24-h urine samples. We also described intake among women in a high-risk program for breast or ovarian cancer. Between April 2002 and June 2003, 451 women aged 30 to 50 yr with a family history of breast or ovarian cancer completed the SFQ and FFQ. Of them, 27 provided four 24-h and overnight urine specimens. In these women, 24-h sample measures were correlated with SFQ estimates of daidzein (Spearman r = .48) and genistein (r = .54) intake, moderately correlated with the Willett FFQ (daidzein r = .38, genistein r = .33), and strongly correlated with overnight urine excretion (daidzein r = .84, genistein r = 0.93). Among all 451 SFQ respondents, mean (median) daidzein and genistein intakes were 2.8 (0.24) and 3.9 (0.30) mg/day. Primary sources of both were soymilk, soy nuts, and tofu.We conclude that targeted soy food questionnaires, comprehensive FFQs, and multiple overnight urines are all reasonable options for assessing isoflavone intake in epidemiologic studies
- …