2 research outputs found

    Microstructural evaluation of thermal-sprayed CoCrFeMnNi0.8V high-entropy alloy coatings

    Get PDF
    The aim of this work is to improve the understanding of the effect of the cooling rate on the microstructure of high-entropy alloys, with a focus on high-entropy alloy coatings, by using a combined computational and experimental validation approach. CoCrFeMnNi0.8V coatings were deposited on a steel substrate with high velocity oxy-air-fuel spray with the employment of three different deposition temperatures. The microstructures of the coatings were studied and compared with the microstructure of the equivalent bulk high-entropy alloy fabricated by suction casting and powder fabricated by gas atomization. According to the results, the powder and the coatings deposited by low and medium temperatures consisted of a BCC microstructure. On the other hand, the microstructure of the coating deposited by high temperature was more complex, consisting of different phases, including BCC, FCC and oxides. The phase constitution of the bulk high-entropy alloy included an FCC phase and sigma. This variation in the microstructural outcome was assessed in terms of solidification rate, and the results were compared with Thermo-Calc modelling. The microstructure can be tuned by the employment of rapid solidification techniques such as gas atomization, as well as subsequent processing such as high velocity oxy-air-fuel spray with the use of different spray parameters, leading to a variety of microstructural outcomes. This approach is of high interest for the field of high-entropy alloy coatings

    Metallurgical developments in steam-methane reformer tube alloys

    Get PDF
    Alloy development plays a vital role in the technological advancement in steam-methane reformers, with development remaining stagnant in the past three decades. This critical review aims to provide the overview of previous development strategies and highlight the challenges faced by the future development of reformer alloys. In this review, the physical metallurgy of modern reformer alloys is introduced, demonstrating the significance of the MC, M7C3 and M23C6 carbides commonly observed, and the careful balance between alloying additions and the designed microstructures governing performance. The compositional developments, along with the advancements enabled by the introduction of centrifugal casting, are highlighted. The effects of common alloying additions are also addressed, with implications of the existing knowledge on future alloy development opportunities, discussed
    corecore