28 research outputs found

    Three-dimensional Magnetic Resonance Imaging–based Printed Models of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Patient-tailored Radical Prostatectomy—A Feasibility Study

    Get PDF
    In this prospective single-center feasibility study, we demonstrate that the use of three-dimensional (3D)-printed prostate models support nerve-sparing radical prostatectomy (RP) and intraoperative frozen sectioning (IFS) in ten men suffering from intermediate- and high-risk prostate cancer (PC), of whom seven harbored pT3 disease. Patient-specific 3D resin models were printed based on preoperative multiparametric magnetic resonance imaging (mpMRI) to provide an exact 3D impression of significant tumor lesions. RP and IFS were planned in a patient-tailored fashion. The 36-region Prostate Imaging Reporting and Data System (PI-RADS) v2.0 scheme was used to compare the MRI/3D print with whole-mount histopathology. In all cases, localization of the index lesion was correctly displayed by MRI and the 3D model. Localization of significant PC lesions correlated significantly (Pearson`s correlation coefficient of 0.88; p <  0.001). In addition, a significant correlation of the width, length, and volume of the tumor and prostate gland, derived from the printed model and histopathology, was found, using Pearson's correlation analyses and Bland-Altman plots. In conclusion, 3D-printed prostate models correlate well with final pathology and can be used to tailor RP. PATIENT SUMMARY: The use of three-dimensional (3D)-printed prostate models based on preoperative magnetic resonance imaging (MRI) may improve prostatectomy outcome. This study confirmed the accuracy of 3D-printed prostates compared with pathology from radical prostatectomy specimens. Thus, MRI-derived 3D-printed prostate models can assist in prostate cancer surgery

    Detection of Significant Prostate Cancer Using Target Saturation in Transperineal Magnetic Resonance Imaging/Transrectal Ultrasonography-fusion Biopsy

    Get PDF
    BACKGROUND: Multiparametric magnetic resonance imaging (mpMRI) and targeted biopsies (TBs) facilitate accurate detection of significant prostate cancer (sPC). However, it remains unclear how many cores should be applied per target. OBJECTIVE: To assess sPC detection rates of two different target-dependent magnetic resonance imaging (MRI)/transrectal ultrasonography (TRUS)-fusion biopsy approaches (TB and target saturation [TS]) compared with extended systematic biopsies (SBs). DESIGN, SETTING, AND PARTICIPANTS: Retrospective single-centre outcome of transperineal MRI/TRUS-fusion biopsies of 213 men was evaluated. All men underwent TB with a median of four cores per MRI lesion, followed by a median of 24 SBs, performed by experienced urologists. Cancer and sPC (International Society of Urological Pathology grade group ≥2) detection rates were analysed. TB was compared with SB and TS, with nine cores per target, calculated by the Ginsburg scheme and using individual cores of the lesion and its "penumbra". OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cancer detection rates were calculated for TS, TB, and SB at both lesion and patient level. Combination of SB + TB served as a reference. Statistical differences in prostate cancer (PC) detection between groups were calculated using McNemar's tests with confidence intervals. RESULTS AND LIMITATIONS: TS detected 99% of 134 sPC lesions, which was significantly higher than the detection by TB (87%, p = 0.001) and SB (82%, p < 0.001). SB detected significantly more of the 72 low-risk PC lesions than TB (99% vs 68%, p < 0.001) and 10% (p = 0.15) more than that detected by TS. At a per-patient level, 99% of men harbouring sPC were detected by TS. This was significantly higher than that by TB and SB (89%, p = 0.03 and 81%, p = 0.001, respectively). Limitations include limited generalisability, as a transperineal biopsy route was used. CONCLUSIONS: TS detected significantly more cases of sPC than TB and extended SB. Given that both 99% of sPC lesions and men harbouring sPC were identified by TS, the results suggest that this approach allows to omit SB cores without compromising sPC detection. PATIENT SUMMARY: Target saturation of magnetic resonance imaging-suspicious prostate lesions provides excellent cancer detection and finds fewer low-risk tumours than the current gold standard combination of targeted and systematic biopsies
    corecore