279 research outputs found

    A hard x ray split and delay unit for the HED experiment at the European XFEL

    Get PDF
    For the High Energy Density HED experiment [1] at the European XFEL [2] an x ray split and delay unit SDU is built covering photon energies from 5 keV up to 20 keV [3]. This SDU will enable time resolved x ray pump x ray probe experiments [4,5] as well as sequential diffractive imaging [6] on a femtosecond to picosecond time scale. Further, direct measurements of the temporal coherence properties will be possible by making use of a linear autocorrelation [7,8]. The set up is based on geometric wavefront beam splitting, which has successfully been implemented at an autocorrelator at FLASH [9]. The x ray FEL pulses are split by a sharp edge of a silicon mirror coated with multilayers. Both partial beams will then pass variable delay lines. For different photon energies the angle of incidence onto the multilayer mirrors will be adjusted in order to match the Bragg condition. For a photon energy of h amp; 957; 20 keV a grazing angle of amp; 952; 0.57 has to be set, which results in a footprint of the beam 6 amp; 963; on the mirror of l 98 mm. At this photon energy the reflectance of a Mo B4C multi layer coating with a multilayer period of d 3.2 nm and N 200 layers amounts to R 0.92. In order to enhance the maximum transmission for photon energies of h amp; 957; 8 keV and below, a Ni B4C multilayer coating can be applied beside the Mo B4C coating for this spectral region. Because of the different incidence angles, the path lengths of the beams will differ as a function of wavelength. Hence, maximum delays between 2.5 ps at h amp; 957; 20 keV and up to 23 ps at h amp; 957; 5 keV will be possibl

    New resampling method for evaluating stability of clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hierarchical clustering is a widely applied tool in the analysis of microarray gene expression data. The assessment of cluster stability is a major challenge in clustering procedures. Statistical methods are required to distinguish between real and random clusters. Several methods for assessing cluster stability have been published, including resampling methods such as the bootstrap.</p> <p>We propose a new resampling method based on continuous weights to assess the stability of clusters in hierarchical clustering. While in bootstrapping approximately one third of the original items is lost, continuous weights avoid zero elements and instead allow non integer diagonal elements, which leads to retention of the full dimensionality of space, i.e. each variable of the original data set is represented in the resampling sample.</p> <p>Results</p> <p>Comparison of continuous weights and bootstrapping using real datasets and simulation studies reveals the advantage of continuous weights especially when the dataset has only few observations, few differentially expressed genes and the fold change of differentially expressed genes is low.</p> <p>Conclusion</p> <p>We recommend the use of continuous weights in small as well as in large datasets, because according to our results they produce at least the same results as conventional bootstrapping and in some cases they surpass it.</p

    Targets for high repetition rate laser facilities: Needs, challenges and perspectives

    Get PDF
    A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities

    Axion Searches with Helioscopes and astrophysical signatures for axion(-like) particles

    Full text link
    The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral shape of solar X-ray spectra, and their isotropic emission and lateral size. The derived rst mass of the axion(-like) particles is ~10meV. The axion interaction with magnetic field gradient is a generic theoretical suggestion that could reconcile present limits with relevant solar X-ray activity. A short outlook of the experimentally expanding solar axion field is given.Comment: 31 pages, 18 figures. Aded 1 author, updated references. Accepted for the special issue of NJP on dark matter (July 2009
    corecore