25 research outputs found

    Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays

    Get PDF
    BACKGROUND: Spotted 70-mer oligonucleotide arrays offer potentially greater specificity and an alternative to expensive cDNA library maintenance and amplification. Since microarray fabrication is a considerable source of data variance, we previously directly tagged cDNA probes with a third fluorophore for prehybridization quality control. Fluorescently modifying oligonucleotide sets is cost prohibitive, therefore, a co-spotted Staphylococcus aureus-specific fluorescein-labeled "tracking" oligonucleotide is described to monitor fabrication variables of a Mycobacterium tuberculosis oligonucleotide microarray. RESULTS: Significantly (p < 0.01) improved DNA retention was achieved printing in 15% DMSO/1.5 M betaine compared to the vendor recommended buffers. Introduction of tracking oligonucleotide did not effect hybridization efficiency or introduce ratio measurement bias in hybridizations between M. tuberculosis H37Rv and M. tuberculosis mprA. Linearity between the mean log Cy3/Cy5 ratios of genes differentially expressed from arrays either possessing or lacking the tracking oligonucleotide was observed (R(2 )= 0.90, p < 0.05) and there were no significant differences in Pearson's correlation coefficients of ratio data between replicates possessing (0.72 ± 0.07), replicates lacking (0.74 ± 0.10), or replicates with and without (0.70 ± 0.04) the tracking oligonucleotide. ANOVA analysis confirmed the tracking oligonucleotide introduced no bias. Titrating target-specific oligonucleotide (40 μM to 0.78 μM) in the presence of 0.5 μM tracking oligonucleotide, revealed a fluorescein fluorescence inversely related to target-specific oligonucleotide molarity, making tracking oligonucleotide signal useful for quality control measurements and differentiating false negatives (synthesis failures and mechanical misses) from true negatives (no gene expression). CONCLUSIONS: This novel approach enables prehybridization array visualization for spotted oligonucleotide arrays and sets the stage for more sophisticated slide qualification and data filtering applications

    Genetic Mapping of Multiple Metabolic Traits Identifies Novel Genes for Adiposity, Lipids and Insulin Secretory Capacity in Outbred Rats

    Get PDF
    Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1519 male HS rats, with liver and adipose transcriptomes measured in over 410 rats. Genotypes were imputed from low coverage whole genome sequence. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), employing both SNP- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for a fat pad weight pQTL on Chr1, Krtcap3 for fat pad weight and serum lipids pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20 and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knock-down/out models, thereby shedding light on novel regulators of obesity

    Effect of permanent right internal mammary artery occlusion on right coronary artery supply: A randomized placebo-controlled clinical trial.

    Get PDF
    Natural, nonsurgical internal mammary artery (IMA) bypasses to the coronary circulation have been shown to function as extracardiac sources of myocardial blood supply. The goal of this randomized, placebo-controlled, double-blind trial was to test the efficacy of permanent right IMA (RIMA) device occlusion on right coronary artery (RCA) occlusive blood supply and on clinical and electrocardiographic (ECG) signs of myocardial ischemia. METHODS This was a prospective superiority trial in 100 patients with chronic coronary artery disease randomly allocated (1:1) to RIMA vascular device occlusion (verum group) or to RIMA sham procedure (placebo group). The primary study end point was RCA collateral flow index (CFI) as obtained during a 1-minute ostial RCA balloon occlusion at baseline before and at follow-up examination 6 weeks after the trial intervention. CFI is the ratio between simultaneous mean coronary occlusive divided by mean aortic pressure both subtracted by central venous pressure. Simultaneously obtained secondary study end points were the registration of angina pectoris and quantitative intracoronary ECG ST-segment shift. RESULTS CFI change during the follow-up period was +0.036 ± 0.068 in the verum group and -0.021 ± 0.097 in the placebo group (P = .0011). Angina pectoris during the same RCA balloon occlusions had disappeared at follow-up in 14/49 patients of the verum group and in 4/49 patients of the placebo group (P = .0091). Simultaneous intracoronary ECG ST-segment shift change revealed diminished myocardial ischemia at follow-up in the verum group and more severe ischemia in the placebo group. CONCLUSIONS Permanent RIMA device occlusion augments RCA supply to the effect of diminishing clinical and electrocardiographic signs of myocardial ischemia during a brief controlled coronary occlusion

    Genetically Hypertensive Brown Norway Congenic Rat Strains Suggest Intermediate Traits Underlying Genetic Hypertension

    Get PDF
    Aim To determine the independent and combined effects of three quantitative trait loci (QTL) for blood pressure in the Genetically Hypertensive (GH/Omr) rat by generating and characterizing single and combined congenic strains that have QTL on rat chromosomes (RNO) 2, 6, and 18 from the GH rat introduced into a hypertension resistant Brown Norway (BN) background. Methods Linkage analysis and QTL identification (genome wide QTL scan) were performed with MapMaker/EXP to build the genetic maps and MapMaker/QTL for linking the phenotypes to the genetic map. The congenic strains were derived using marker-assisted selection strategy from a single male F1 offspring of an intercross between the male GH/Omr and female BN/Elh, followed by 10 generations of selective backcrossing to the female BN progenitor strain. Single congenic strains generated were BN.GH-(D2Rat22-D2Mgh11)/Mcwi (BN.GH2); BN.GH-(D6Mit12-D6Rat15)/Mcwi (BN.GH6); and BN.GH-(D18Rat41-D18Mgh4)/Mcwi (BN.GH18). Blood pressure measurements were obtained either via a catheter placed in the femoral artery or by radiotelemetry in the single and combined congenics. Responses to angiotensin II (ANGII), norepinephrine (NE), and baroreceptor sensitivity were measured in the single congenics. Results Transferring one or more QTL from the hypertensive GH into normotensive BN strain was not sufficient to cause hypertension in any of the developed congenic strains. There were no differences between the parental and congenic strains in their response to NE. However, BN.GH18 rats revealed significantly lower baroreceptor sensitivity (β = -1.25 ± 0.17), whereas BN.GH2 (β = 0.66 ± 0.09) and BN.GH18 (β = 0.71 ± 0.07) had significantly decreased responses to ANGII from those observed in the BN (β = 0.88 ± 0.08). Conclusion The failure to alter blood pressure levels by introducing the hypertensive QTL from the GH into the hypertension resistant BN background suggests that the QTL effects are genome backgrounddependent in the GH rat. BN.GH2 and BN.GH18 rats reveal significant differences in response to ANGII and impaired baroreflex sensitivity, suggesting that we may have captured a locus responsible for the genetic control of baroreceptor sensitivity, which would be considered an intermediate phenotype of blood pressure

    Genetic Mapping of Multiple Traits Identifies Novel Genes for Adiposity, Lipids, and Insulin Secretory Capacity in Outbred Rats.

    No full text
    Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in \u3e410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity

    Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer

    No full text
    ABSTRACT Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locusspecific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p &lt; 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer

    Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats.

    No full text
    OBJECTIVE: Obesity is a major risk factor for multiple diseases and is in part heritable, yet the majority of causative genetic variants that drive excessive adiposity remain unknown. Here, outbred heterogeneous stock (HS) rats were used in controlled environmental conditions to fine-map novel genetic modifiers of adiposity. METHODS: Body weight and visceral fat pad weights were measured in male HS rats that were also genotyped genome-wide. Quantitative trait loci (QTL) were identified by genome-wide association of imputed single-nucleotide polymorphism (SNP) genotypes using a linear mixed effect model that accounts for unequal relatedness between the HS rats. Candidate genes were assessed by protein modeling and mediation analysis of expression for coding and noncoding variants, respectively. RESULTS: HS rats exhibited large variation in adiposity traits, which were highly heritable and correlated with metabolic health. Fine-mapping of fat pad weight and body weight revealed three QTL and prioritized five candidate genes. Fat pad weight was associated with missense SNPs in Adcy3 and Prlhr and altered expression of Krtcap3 and Slc30a3, whereas Grid2 was identified as a candidate within the body weight locus. CONCLUSIONS: These data demonstrate the power of HS rats for identification of known and novel heritable mediators of obesity traits. Obesity 2018; 26(1):213-222

    Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant

    No full text
    Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotype
    corecore