355 research outputs found

    The International Decision-Making and Travel Behavior of Graduates Participating in Working Holiday

    Get PDF
    After graduation, most graduates find themselves at a significant stage in their life as they have to decide between “further study” and “working.” When faced with this confusion and uncertainty, a “working holiday” combining travel and work has coincidentally becomes a third option. This study employed a qualitative approach through literature review, in-depth interviews, and semi-structured interviews. The research revealed that graduates are influenced by “internal personal thinking” and “external driving forces” when they embark on a working holiday. The former includes negative obstructions and positive stimulus. The latter factor’s stimulus includes attraction of natural landscapes, history and culture, learning foreign languages, safety concerns, difficulties in visa application, and the opportunity to obtain a salaried job. The process of embarking on a working holiday was complex and unpredictable. The traveling behavior of working holiday destinations included short-distance leisure behavior and long-distance traveling behavior. In terms of the influences of short-distance leisure behavior, graduates preferred being employed by service industries that had less working hours, flexible work arrangements and included the purchase of preferential price tickets. Graduates’ long-distance traveling behavior was affected by the work they performed. The travel time was different between various industries

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    A Corpus-Based Tool for Exploring Domain-Specific Collocations in English

    Get PDF

    Assessing the Decision-Making Process in Human-Robot Collaboration Using a Lego-like EEG Headset

    Get PDF
    Human-robot collaboration (HRC) has become an emerging field, where the use of a robotic agent has been shifted from a supportive machine to a decision-making collaborator. A variety of factors can influence the effectiveness of decision-making processes during HRC, including the system-related (e.g., robot capability) and human-related (e.g., individual knowledgeability) factors. As a variety of contextual factors can significantly impact the human-robot decision-making process in collaborative contexts, the present study adopts a Lego-like EEG headset to collect and examine human brain activities and utilizes multiple questionnaires to evaluate participants’ cognitive perceptions toward the robot. A user study was conducted where two levels of robot capabilities (high vs. low) were manipulated to provide system recommendations. The participants were also identified into two groups based on their computational thinking (CT) ability. The EEG results revealed that different levels of CT abilities trigger different brainwaves, and the participants’ trust calibration of the robot also varies the resultant brain activities

    Deep Learning-based Fall Detection Algorithm Using Ensemble Model of Coarse-fine CNN and GRU Networks

    Full text link
    Falls are the public health issue for the elderly all over the world since the fall-induced injuries are associated with a large amount of healthcare cost. Falls can cause serious injuries, even leading to death if the elderly suffers a "long-lie". Hence, a reliable fall detection (FD) system is required to provide an emergency alarm for first aid. Due to the advances in wearable device technology and artificial intelligence, some fall detection systems have been developed using machine learning and deep learning methods to analyze the signal collected from accelerometer and gyroscopes. In order to achieve better fall detection performance, an ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study. The parallel structure design used in this model restores the different grains of spatial characteristics and capture temporal dependencies for feature representation. This study applies the FallAllD public dataset to validate the reliability of the proposed model, which achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively. The results demonstrate the reliability of the proposed ensemble model in discriminating falls from daily living activities and its superior performance compared to the state-of-the-art convolutional neural network long short-term memory (CNN-LSTM) for FD
    • 

    corecore