143 research outputs found

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Id1 Interacts and Stabilizes the Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) in Nasopharyngeal Epithelial Cells

    Get PDF
    The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells

    Knockdown of ZNF268, which Is Transcriptionally Downregulated by GATA-1, Promotes Proliferation of K562 Cells

    Get PDF
    The human ZNF268 gene encodes a typical KRAB-C2H2 zinc finger protein that may participate in hematopoiesis and leukemogenesis. A recent microarray study revealed that ZNF268 expression continuously decreases during erythropoiesis. However, the molecular mechanisms underlying regulation of ZNF268 during hematopoiesis are not well understood. Here we found that GATA-1, a master regulator of erythropoiesis, repressed the promoter activity and transcription of ZNF268. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that GATA-1 directly bound to a GATA binding site in the ZNF268 promoter in vitro and in vivo. Knockdown of ZNF268 in K562 erythroleukemia cells with specific siRNA accelerated cellular proliferation, suppressed apoptosis, and reduced expression of erythroid-specific developmental markers. It also promoted growth of subcutaneous K562-derived tumors in nude mice. These results suggest that ZNF268 is a crucial downstream target and effector of GATA-1. They also suggest the downregulation of ZNF268 by GATA-1 is important in promoting the growth and suppressing the differentiation of K562 erythroleukemia cells

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Factors affecting exhaled nitric oxide measurements: the effect of sex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exhaled nitric oxide (F<sub>E</sub>NO) measurements are used as a surrogate marker for eosinophilic airway inflammation. However, many constitutional and environmental factors affect F<sub>E</sub>NO, making it difficult to devise reference values. Our aim was to evaluate the relative importance of factors affecting F<sub>E</sub>NO in a well characterised adult population.</p> <p>Methods</p> <p>Data were obtained from 895 members of the Dunedin Multidisciplinary Health and Development Study at age 32. The effects of sex, height, weight, lung function indices, smoking, atopy, asthma and rhinitis on F<sub>E</sub>NO were explored by unadjusted and adjusted linear regression analyses.</p> <p>Results</p> <p>The effect of sex on F<sub>E</sub>NO was both statistically and clinically significant, with F<sub>E</sub>NO levels approximately 25% less in females. Overall, current smoking reduced F<sub>E</sub>NO up to 50%, but this effect occurred predominantly in those who smoked on the day of the F<sub>E</sub>NO measurement. Atopy increased F<sub>E</sub>NO by 60%. The sex-related differences in F<sub>E</sub>NO remained significant (p < 0.001) after controlling for all other significant factors affecting F<sub>E</sub>NO.</p> <p>Conclusion</p> <p>Even after adjustment, F<sub>E</sub>NO values are significantly different in males and females. The derivation of reference values and the interpretation of F<sub>E</sub>NO in the clinical setting should be stratified by sex. Other common factors such as current smoking and atopy also require to be taken into account.</p

    Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines.</p> <p>Methods</p> <p>Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis.</p> <p>Results</p> <p>We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis.</p> <p>Conclusions</p> <p>The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first evidence that altered primary cilium expression and function may be part of some malignant phenotypes. Further, we provide the first evidence that ciliogenesis is not an all or none process; rather defects can arrest this process at various points, particularly at the stage subsequent to basal body association with the plasma membrane.</p

    Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine

    Get PDF
    Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Å resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3

    Clinical Significance of Thrombosis in an Intracardiac Blind Pouch After a Fontan Operation

    Get PDF
    The univentricular heart after the Fontan operation may have a blind pouch formed by the pulmonary stump or rudimentary ventricle according to the anatomy before surgery. Thrombosis in an intracardiac blind pouch of patients with a univentricular heart is a hazardous complication. Because only a few reports have described this complication, the authors evaluated the clinical significance of thrombosis in an intracardiac blind pouch of a univentricular heart. They performed a retrospective review of medical records from August 1986 to December 2007. Four patients were confirmed as having thrombosis in a pulmonary artery stump and one patient as having thrombosis in a rudimentary ventricle shown by cardiac computed tomography (CT). This represents 1.85% (5/271) of patients with ongoing regular follow-up evaluation after the Fontan operation. The median age at diagnosis was 14.2 years. Two of the five patients were taking aspirin and one patient was taking warfarin when they were identified for the development of thrombosis. None of the patients demonstrated thrombosis in the Fontan tract or venous side of the circulation. Brain magnetic resonance imaging (MRI) showed that three patients had cerebral infarction and one patient had suggestive old ischemia. Three patients with thrombus in the pulmonary stump underwent pulmonary artery stump thrombectomy and pulmonary valve obliteration. One patient with thrombus in the rudimentary ventricle underwent ventricular septal defect (VSD) closure with thrombectomy. Thrombus in a blind pouch could cause systemic thromboembolism despite little blood communication. Therefore, surgical modification of the pulmonary stump and VSD closure of the rudimentary ventricle are required to reduce the risk of later thrombus formation. Clinicians should not overlook the possibility of thrombus in a ligated pulmonary artery stump or a rudimentary ventricle after the Fontan operation, which may increase the risk of embolic stroke for patients with single-ventricle physiology
    corecore