10,116 research outputs found

    Evaluation of 2 cognitive abilities tests in a dual-task environment

    Get PDF
    Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students

    Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    Full text link
    In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable novel quantum operations on the two modes, including laser cooling of the microwave mode, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to a cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up-converted to "flying" optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.Comment: 12 pages, 10 figures, v2: updated and submitte

    Multifractality and scale invariance in human heartbeat dynamics

    Full text link
    Human heart rate is known to display complex fluctuations. Evidence of multifractality in heart rate fluctuations in healthy state has been reported [Ivanov et al., Nature {\bf 399}, 461 (1999)]. This multifractal character could be manifested as a dependence on scale or beat number of the probability density functions (PDFs) of the heart rate increments. On the other hand, scale invariance has been recently reported in a detrended analysis of healthy heart rate increments [Kiyono et al., Phys. Rev. Lett. {\bf 93}, 178103 (2004)]. In this paper, we resolve this paradox by clarifying that the scale invariance reported is actually exhibited by the PDFs of the sum of detrended healthy heartbeat intervals taken over different number of beats, and demonstrating that the PDFs of detrended healthy heart rate increments are scale dependent. Our work also establishes that this scale invariance is a general feature of human heartbeat dynamics, which is shared by heart rate fluctuations in both healthy and pathological states

    On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography

    Get PDF
    The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733 (2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum state is actually lower than that of a classical state with otherwise identical parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the proposed formalism, and the experiment is shown to have a reduced multiphoton absorption rate in order to emulate quantum lithography accurately. Finally, quantum lithography by the use of a jointly Gaussian quantum state of light is investigated, in order to illustrate the trade-off between resolution enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to referees' comments, v3: rewritten and extended, v4: accepted by Physical Review

    Ziv-Zakai Error Bounds for Quantum Parameter Estimation

    Full text link
    I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum Cram\'er-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds, I derive both a "Heisenberg" error limit that scales with the average energy and a limit similar to the quantum Cram\'er-Rao bound that scales with the energy variance. These results are further illustrated by applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai bound can be much higher and thus tighter than a quantum Cram\'er-Rao bound for states with highly non-Gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter is expected to be tight.Comment: v1: preliminary result, 3 pages; v2: major update, 4 pages + supplementary calculations, v3: another major update, added proof of "Heisenberg" limit, v4: accepted by PR

    Quantum temporal correlations and entanglement via adiabatic control of vector solitons

    Get PDF
    It is shown that optical pulses with a mean position accuracy beyond the standard quantum limit can be produced by adiabatically expanding an optical vector soliton followed by classical dispersion management. The proposed scheme is also capable of entangling positions of optical pulses and can potentially be used for general continuous-variable quantum information processing.Comment: 5 pages, 1 figure, v2: accepted by Physical Review Letters, v3: minor editing and shortening, v4: included the submitted erratu

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    Specific heat at constant volume in the thermodynamic model

    Full text link
    A thermodynamic model for multifragmentation which is frequently used appears to give very different values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is used. The cause for this discrepancy is analysed.Comment: Revtex, 7 pages including 4 figure
    • …
    corecore