21 research outputs found

    Non-Perturbative Models For The Quantum Gravitational Back-Reaction On Inflation

    Get PDF
    We consider a universe in which inflation commences because of a positive cosmological constant, the effect of which is progressively screened by the interaction between virtual gravitons that become trapped in the expansion of spacetime. Perturbative calculations have shown that screening becomes non-perturbatively large at late times. In this paper we consider effective field equations which can be evolved numerically to provide a non-perturbative description of the process. The induced stress tensor is that of an effective scalar field which is a non-local functional of the metric. We use the known perturbative result, constrained by general principles and guided by a physical description of the screening mechanism, to formulate a class of ansatze for this functional. A scheme is given for numerically evolving the field equations which result from a simple ansatz, from the beginning of inflation past the time when it ends. We find that inflation comes to a sudden end, producing a system whose equation of state rapidly approaches that of radiation. Explicit numerical results are presented.Comment: 50 pages, LaTeX 2 epsilon, 11 Postscript files, uses psfig.st

    Dimensionally Regulated Graviton 1-Point Function in de Sitter

    Full text link
    We use dimensional regularization to compute the 1PI 1-point function of quantum gravity at one loop order in a locally de Sitter background. As with other computations, the result is a finite constant at this order. It corresponds to a small positive renormalization of the cosmological constant.Comment: 25 pages, LaTeX 2epsilon, uses Axodraw for one figure, revised to add some reference

    One Loop Vaccum Polarization in a Locally de Sitter Background

    Full text link
    We compute the one loop vacuum polarization from massless, minimally coupled scalar QED in a locally de Sitter background. Gauge invariance is maintained through the use of dimensional regularization, whereas conformal invariance is explicitly broken by the scalar kinetic term as well as through the conformal anomaly. A fully renormalized result is obtained. The one loop corrections to the linearized, effective field equations do not vanish when evaluated on-shell. In fact the on-shell one loop correction depends quadratically on the inflationary scale factor, similar to a photon mass. The contribution from the conformal anomaly is insignificant by comparison.Comment: 31 pages, LaTeX 2 epsilon, 4 figure

    Computing the Primordial Power Spectra Directly

    Full text link
    The tree order power spectra of primordial inflation depend upon the norm-squared of mode functions which oscillate for early times and then freeze in to constant values. We derive simple differential equations for the power spectra, that avoid the need to numerically simulate the physically irrelevant phases of the mode functions. We also derive asymptotic expansions which should be valid until a few e-foldings before first horizon crossing, thereby avoiding the need to evolve mode functions from the ultraviolet over long periods of inflation.Comment: 11 pages, uses LaTex2

    A generic problem with purely metric formulations of MOND

    Full text link
    We give a simple argument to show that no purely metric-based, relativistic formulation of Milgrom's Modified Newtonian Dynamics (MOND) whose energy functional is stable (in the sense of being quadratic in perturbations) can be consistent with the observed amount of gravitational lensing from galaxies. An important part of the argument is the fact that reproducing the MOND force law requires any completely stable, metric-based theory of gravity to become conformally invariant in the weak field limit. We discuss the prospects for a formulation with a very weak instability.Comment: 4 pages, revtex4, no figure

    Issues Concerning Loop Corrections to the Primordial Power Spectra

    Full text link
    We expound ten principles in an attempt to clarify the debate over infrared loop corrections to the primordial scalar and tensor power spectra from inflation. Among other things we note that existing proposals for nonlinear extensions of the scalar fluctuation field ζ\zeta introduce new ultraviolet divergences which no one understands how to renormalize. Loop corrections and higher correlators of these putative observables would also be enhanced by inverse powers of the slow roll parameter ϔ\epsilon. We propose an extension which should be better behaved.Comment: 36 pages, uses LaTeX2e, version 3 revised for publication with a much expanded section 4, proving that our proposed extension of the zeta-zeta correlator absorbs the one loop infrared divergences from graviton

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    The Hubble Effective Potential

    Full text link
    We generalize the effective potential to scalar field configurations which are proportional to the Hubble parameter of a homogeneous and isotropic background geometry. This may be useful in situations for which curvature effects are significant. We evaluate the one loop contribution to the Hubble Effective Potential for a massless scalar with arbitrary conformal and quartic couplings, on a background for which the deceleration parameter is constant. Among other things, we find that inflationary particle production leads to symmetry restoration at late times.Comment: 32 pages, 6 figures, version 2 published in JCAP with some typoes corrected and two additional reference

    A parton picture of de Sitter space during slow-roll inflation

    Full text link
    It is well-known that expectation values in de Sitter space are afflicted by infra-red divergences. Long ago, Starobinsky proposed that infra-red effects in de Sitter space could be accommodated by evolving the long-wavelength part of the field according to the classical field equations plus a stochastic source term. I argue that--when quantum-mechanical loop corrections are taken into account--the separate-universe picture of superhorizon evolution in de Sitter space is equivalent, in a certain leading-logarithm approximation, to Starobinsky's stochastic approach. In particular, the time evolution of a box of de Sitter space can be understood in exact analogy with the DGLAP evolution of partons within a hadron, which describes a slow logarithmic evolution in the distribution of the hadron's constituent partons with the energy scale at which they are probed.Comment: 36 pages; uses iopart.cls and feynmp.sty. v2: Minor typos corrected. Matches version published in JCA

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result
    corecore