5 research outputs found

    Comparison of Pre-Trained CNNs for Audio Classification Using Transfer Learning

    No full text
    The paper investigates retraining options and the performance of pre-trained Convolutional Neural Networks (CNNs) for sound classification. CNNs were initially designed for image classification and recognition, and, at a second phase, they extended towards sound classification. Transfer learning is a promising paradigm, retraining already trained networks upon different datasets. We selected three ‘Image’- and two ‘Sound’-trained CNNs, namely, GoogLeNet, SqueezeNet, ShuffleNet, VGGish, and YAMNet, and applied transfer learning. We explored the influence of key retraining parameters, including the optimizer, the mini-batch size, the learning rate, and the number of epochs, on the classification accuracy and the processing time needed in terms of sound preprocessing for the preparation of the scalograms and spectrograms as well as CNN training. The UrbanSound8K, ESC-10, and Air Compressor open sound datasets were employed. Using a two-fold criterion based on classification accuracy and time needed, we selected the ‘champion’ transfer-learning parameter combinations, discussed the consistency of the classification results, and explored possible benefits from fusing the classification estimations. The Sound CNNs achieved better classification accuracy, reaching an average of 96.4% for UrbanSound8K, 91.25% for ESC-10, and 100% for the Air Compressor dataset

    Survey on Sound and Video Analysis Methods for Monitoring Face-to-Face Module Delivery

    No full text
    The objective of this work is to identify unobtrusive methodologies that allow the monitoring and understanding of the educational environment, during face to face activities, through capturing and processing of sound and video signals. It is a survey on application and techniques that exploit these two signals (sound and video) retrieved in classrooms, offices and other spaces. We categorize such applications based upon the high level characteristics extracted from the analysis of the low level features of the sound and video signals. Through the overview of these technologies, we attempt to achieve a degree of understanding the human behavior in a smart classroom, on behalf of the students and the teacher. Additionally, we illustrate open-research points for further investigation

    Comparison of Pre-Trained CNNs for Audio Classification Using Transfer Learning

    No full text
    The paper investigates retraining options and the performance of pre-trained Convolutional Neural Networks (CNNs) for sound classification. CNNs were initially designed for image classification and recognition, and, at a second phase, they extended towards sound classification. Transfer learning is a promising paradigm, retraining already trained networks upon different datasets. We selected three ‘Image’- and two ‘Sound’-trained CNNs, namely, GoogLeNet, SqueezeNet, ShuffleNet, VGGish, and YAMNet, and applied transfer learning. We explored the influence of key retraining parameters, including the optimizer, the mini-batch size, the learning rate, and the number of epochs, on the classification accuracy and the processing time needed in terms of sound preprocessing for the preparation of the scalograms and spectrograms as well as CNN training. The UrbanSound8K, ESC-10, and Air Compressor open sound datasets were employed. Using a two-fold criterion based on classification accuracy and time needed, we selected the ‘champion’ transfer-learning parameter combinations, discussed the consistency of the classification results, and explored possible benefits from fusing the classification estimations. The Sound CNNs achieved better classification accuracy, reaching an average of 96.4% for UrbanSound8K, 91.25% for ESC-10, and 100% for the Air Compressor dataset

    Survey on Sound and Video Analysis Methods for Monitoring Face-to-Face Module Delivery

    No full text

    Feature Extraction with Handcrafted Methods and Convolutional Neural Networks for Facial Emotion Recognition

    No full text
    This research compares the facial expression recognition accuracy achieved using image features extracted (a) manually through handcrafted methods and (b) automatically through convolutional neural networks (CNNs) from different depths, with and without retraining. The Karolinska Directed Emotional Faces, Japanese Female Facial Expression, and Radboud Faces Database databases have been used, which differ in image number and characteristics. Local binary patterns and histogram of oriented gradients have been selected as handcrafted methods and the features extracted are examined in terms of image and cell size. Five CNNs have been used, including three from the residual architecture of increasing depth, Inception_v3, and EfficientNet-B0. The CNN-based features are extracted from the pre-trained networks from the 25%, 50%, 75%, and 100% of their depths and, after their retraining on the new databases. Each method is also evaluated in terms of calculation time. CNN-based feature extraction has proved to be more efficient since the classification results are superior and the computational time is shorter. The best performance is achieved when the features are extracted from shallower layers of pre-trained CNNs (50% or 75% of their depth), achieving high accuracy results with shorter computational time. CNN retraining is, in principle, beneficial in terms of classification accuracy, mainly for the larger databases by an average of 8%, also increasing the computational time by an average of 70%. Its contribution in terms of classification accuracy is minimal when applied in smaller databases. Finally, the effect of two types of noise on the models is examined, with ResNet50 appearing to be the most robust to noise
    corecore