16,904 research outputs found

    Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit

    Full text link
    We present a systematic investigation of the magnetoreflectance of highly oriented pyrolytic graphite in magnetic field B up to 18 T . From these measurements, we report the determination of lifetimes tau associated with the lowest Landau levels in the quantum limit. We find a linear field dependence for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent with the hypothesis of a three-dimensional (3D) to 1D crossover in an anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the origin of the anomalous linear in-plane magnetoresistance observed both in bulk graphite and recently in mesoscopic graphite samples

    Calculation of surface motions of a layered half-space

    Get PDF
    A new method is presented for computing the transient response of a set of horizontally stratified, linearly elastic layers overlying a uniform half-space and excited by vertically incident, transient plane waves. In addition, a simple approximate method of satisfactory accuracy is developed that reduces the computing time required. Calculated responses are compared with motions recorded under Union Bay in Seattle to evaluate the agreement between recorded and calculated motions

    Orbital symmetry fingerprints for magnetic adatoms in graphene

    Get PDF
    In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference effects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.Comment: 15 pages, 11 figures. Added discussion about the multi-orbital case and the validity of the single orbital picture. Published versio

    Broken time-reversal symmetry in Josephson junction involving two-band superconductors

    Full text link
    A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction between the two-gap superconductor and the conventional s-wave superconductor. This occurs due to the frustration between the three order parameters analogous to the two antiferromagnetically coupled XY-spins put under a magnetic field. This leads to the interface states with the energies inside the superconducting gap. Possible experimental observations of this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur

    Techniques for the Synthesis of Reversible Toffoli Networks

    Get PDF
    This paper presents novel techniques for the synthesis of reversible networks of Toffoli gates, as well as improvements to previous methods. Gate count and technology oriented cost metrics are used. Our synthesis techniques are independent of the cost metrics. Two new iterative synthesis procedure employing Reed-Muller spectra are introduced and shown to complement earlier synthesis approaches. The template simplification suggested in earlier work is enhanced through introduction of a faster and more efficient template application algorithm, updated (shorter) classification of the templates, and presentation of the new templates of sizes 7 and 9. A novel ``resynthesis'' approach is introduced wherein a sequence of gates is chosen from a network, and the reversible specification it realizes is resynthesized as an independent problem in hopes of reducing the network cost. Empirical results are presented to show that the methods are effective both in terms of the realization of all 3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure

    Anomalous magnetic moment in parity-conserving QED3

    Full text link
    In this article we derive the anomalous magnetic moment of fermions in (2+1)-dimensional parity-conserving QED3, in the presence of an externally applied constant magnetic field. We use a spectral representation of the photon propagator to avoid infrared divergences. We also discuss the scaling with the magnetic field intensity in the case of strong external fields, where there is dynamical mass generation for fermions induced by the magnetic field itself (magnetic catalysis). The results of this paper may be of relevance to the physics of high-temperature superconductors.Comment: 27 pages LATEX, three eps figures incorporate

    The ννγ\nu \nu \gamma Amplitude in an External Homogeneous Electromagnetic Field

    Full text link
    Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ννγ\nu \nu \gamma amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.Comment: 7 pages, 1 figur

    Metal-Insulator-Like Behavior in Semimetallic Bismuth and Graphite

    Full text link
    When high quality bismuth or graphite crystals are placed in a magnetic field directed along the c-axis (trigonal axis for bismuth) and the temperature is lowered, the resistance increases as it does in an insulator but then saturates. We show that the combination of unusual features specific to semimetals, i.e., low carrier density, small effective mass, high purity, and an equal number of electrons and holes (compensation), gives rise to a unique ordering and spacing of three characteristic energy scales, which not only is specific to semimetals but which concomitantly provides a wide window for the observation of apparent field induced metal-insulator behavior. Using magnetotransport and Hall measurements, the details of this unusual behavior are captured with a conventional multi-band model, thus confirming the occupation by semimetals of a unique niche between conventional metals and semiconductors.Comment: 4 pages, 4 figs, data and discussion on bismuth added, final published versio
    corecore