327 research outputs found

    BICM with simplified demapping based on capacity arguments

    Get PDF

    Learning Fine-Grained Visual Understanding for Video Question Answering via Decoupling Spatial-Temporal Modeling

    Full text link
    While recent large-scale video-language pre-training made great progress in video question answering, the design of spatial modeling of video-language models is less fine-grained than that of image-language models; existing practices of temporal modeling also suffer from weak and noisy alignment between modalities. To learn fine-grained visual understanding, we decouple spatial-temporal modeling and propose a hybrid pipeline, Decoupled Spatial-Temporal Encoders, integrating an image- and a video-language encoder. The former encodes spatial semantics from larger but sparsely sampled frames independently of time, while the latter models temporal dynamics at lower spatial but higher temporal resolution. To help the video-language model learn temporal relations for video QA, we propose a novel pre-training objective, Temporal Referring Modeling, which requires the model to identify temporal positions of events in video sequences. Extensive experiments demonstrate that our model outperforms previous work pre-trained on orders of magnitude larger datasets.Comment: BMVC 2022. Code is available at https://github.com/shinying/des

    p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Get PDF
    This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses

    Surface scattering mechanisms of tantalum nitride thin film resistor

    Get PDF
    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms

    Influences of Stacking Architectures of TiO 2

    Get PDF
    We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation of the stacking architectures of TiO2 nanoparticle layers with characteristics of DSSCs. The results suggest that the three-layer DSSC architecture, with sandwiching a 20 nm TiO2 nanoparticle layer between a 37 nm TiO2 nanoparticle layer and a hundred nm sized TiO2 back scattering/reflection layer, is effective in enhancing DSSC efficiencies. The high-total-transmittance 37 nm TiO2 nanoparticle layer with a larger haze can serve as an effective front scattering layer to scatter a portion of the incident light into larger oblique angles and therefore increase optical paths and absorption

    Using Capacitance Sensor to Extract Characteristic Signals of Dozing from Skin Surface

    Get PDF
    Skin is the largest organ of the human body and a physiological structure that is directly exposed to the environment. From a theoretical perspective, numerous physiological and psychological signals use the skin as a medium for input and output with the outside world. Therefore, the skin is considered an optimal signal interception point when developing noninvasive, direct, and rapid signal exploration devices. To date, skin signal interceptions are predominantly performed by measuring skin impedance. However, this method is prone to interference such as sweat secretion, salt accumulation on the skin, and muscle contractions, which may result in a substantial amount of interference and erroneous results. The present study proposes novel and effective methods for skin signal interception, such as using a nested probe as a sensor to measure capacitance to be further processed as physiological and psychological signals. The experimental results indicate that the capacitance curve for the transition between wakefulness and dozing exhibits significant changes. This change in the curve can be analyzed by computer programs to clearly and rapidly determine whether the subject has entered the initial phases of sleep

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR > 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR &gt; 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries.</p
    corecore