5,028 research outputs found

    Context-rule Model for Pos Tagging

    Get PDF

    Ultrafast all-optical switching via coherent modulation of metamaterial absorption

    Full text link
    We report on the demonstration of a femtosecond all-optical modulator providing, without nonlinearity and therefore at arbitrarily low intensity, ultrafast light-by-light control. The device engages the coherent interaction of optical waves on a metamaterial nanostructure only 30 nm thick to efficiently control absorption of near-infrared (750-1040 nm) femtosecond pulses, providing switching contrast ratios approaching 3:1 with a modulation bandwidth in excess of 2 THz. The functional paradigm illustrated here opens the path to a family of novel meta-devices for ultra-fast optical data processing in coherent networks.Comment: 5 pages, 4 figure

    Use of an open-source CAD software program and additive manufacturing technology to design and fabricate a definitive cast for retrofitting a crown to an existing removable partial denture

    Get PDF
    This technical report describes a digital process for designing and fabricating a stackable definitive cast and die system to facilitate the fabrication of a new surveyed crown to retrofit to a removable partial denture (RPD). By using an open-source computer-aided design (CAD) software program, this technique provides an economical option for dental clinicians and laboratory technicians to use intraoral scans and design a stackable definitive cast and die system with minimal financial investment in the CAD software. In addition, this technique provides the advantage of a conventional indirect technique in that it can create a definitive cast with an RPD clasp assembly ready for the dental technician to properly contour the new surveyed crown, but without the need for the patient to be without the RPD during the process

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    (Z)-4-(2-Hy­droxy­benzyl­idene)-1-methyl-2-phenyl-1H-imidazol-5(4H)-one

    Get PDF
    In the title compound, C17H14N2O2, the asymmetric unit comprises two mol­ecules that are comformationally similar [the dihedral angles between the phenyl rings in each are 46.35 (2) and 48.04 (3)°], with the conformation stabilized by intra­molecular O—H⋯N hydrogen bonds, which generate S(7) rings. In the crystal, inversion-related mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming dimers with an R 2 2(16) graph-set motif. Weak inter-ring π–π stacking is observed in the structure, the shortest centroid-to-centroid distance being 3.7480 (13) Å

    Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Signal-to-Noise-Ratio (SNR) is often used for identification of biomarkers for two-class problems and no formal and useful generalization of SNR is available for multiclass problems. We propose innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene Dominant Index and Gene Dormant Index (GDIs). These two indices lead to the concepts of dominant and dormant genes with biological significance. We use these indices to develop methodologies for discovery of dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from the literature we have shown that the GDI based method can identify dominant and dormant genes that play significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems.</p> <p>Results and discussion</p> <p>To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer). For each data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers. We then use six machine learning tools, Nearest Neighbor Classifier (NNC), Nearest Mean Classifier (NMC), Support Vector Machine (SVM) classifier with linear kernel, and SVM classifier with Gaussian kernel, where both SVMs are used in conjunction with one-vs-all (OVA) and one-vs-one (OVO) strategies. We found GDIs to be very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets we could achieve better or comparable prediction accuracies usually with fewer marker genes than results reported in the literature using the same computational protocols. The dominant genes are usually easy to find while good dormant genes may not always be available as dormant genes require stronger constraints to be satisfied; but when they are available, they can be used for authentication of diagnosis.</p> <p>Conclusion</p> <p>Since GDI based schemes can find a small set of dominant/dormant biomarkers that is adequate to design diagnostic prediction systems, it opens up the possibility of using real-time qPCR assays or antibody based methods such as ELISA for an easy and low cost diagnosis of diseases. The dominant and dormant genes found by GDIs can be used in different ways to design more reliable diagnostic prediction systems.</p

    Certified Robustness of Quantum Classifiers against Adversarial Examples through Quantum Noise

    Full text link
    Recently, quantum classifiers have been known to be vulnerable to adversarial attacks, where quantum classifiers are fooled by imperceptible noises to have misclassification. In this paper, we propose one first theoretical study that utilizing the added quantum random rotation noise can improve the robustness of quantum classifiers against adversarial attacks. We connect the definition of differential privacy and demonstrate the quantum classifier trained with the natural presence of additive noise is differentially private. Lastly, we derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples supported by experimental results.Comment: Submitted to IEEE ICASSP 202
    corecore