72 research outputs found

    On Exploring the Reasoning Capability of Large Language Models with Knowledge Graphs

    Full text link
    This paper examines the capacity of LLMs to reason with knowledge graphs using their internal knowledge graph, i.e., the knowledge graph they learned during pre-training. Two research questions are formulated to investigate the accuracy of LLMs in recalling information from pre-training knowledge graphs and their ability to infer knowledge graph relations from context. To address these questions, we employ LLMs to perform four distinct knowledge graph reasoning tasks. Furthermore, we identify two types of hallucinations that may occur during knowledge reasoning with LLMs: content and ontology hallucination. Our experimental results demonstrate that LLMs can successfully tackle both simple and complex knowledge graph reasoning tasks from their own memory, as well as infer from input context.Comment: Presented at the Generative-IR Workshop during SIGIR 2023. https://coda.io/@sigir/gen-i

    Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures

    Get PDF
    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au+ ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures

    Template-Free and Surfactant-Free Synthesis of Selective Multi-Oxide-Coated Ag Nanowires Enabling Tunable Surface Plasmon Resonance

    No full text
    Without using templates, seeds and surfactants, this study successfully prepared multi-oxide-layer coated Ag nanowires that enable tunable surface plasmon resonance without size or shape changes. A spontaneously grown ultra-thin titania layer onto the Ag nanowire surface causes a shift in surface plasmon resonance towards low energy (high wavelength) and also acts as a preferential site for the subsequent deposition of various oxides, e.g., TiO2 and CeO2. The difference in refractive indices results in further plasmonic resonance shifts. This verifies that the surface plasma resonance wavelength of one-dimensional nanostructures can be adjusted using refractive indices and shell oxide thickness design

    Template-Free and Surfactant-Free Synthesis of Selective Multi-Oxide-Coated Ag Nanowires Enabling Tunable Surface Plasmon Resonance

    No full text
    Without using templates, seeds and surfactants, this study successfully prepared multi-oxide-layer coated Ag nanowires that enable tunable surface plasmon resonance without size or shape changes. A spontaneously grown ultra-thin titania layer onto the Ag nanowire surface causes a shift in surface plasmon resonance towards low energy (high wavelength) and also acts as a preferential site for the subsequent deposition of various oxides, e.g., TiO2 and CeO2. The difference in refractive indices results in further plasmonic resonance shifts. This verifies that the surface plasma resonance wavelength of one-dimensional nanostructures can be adjusted using refractive indices and shell oxide thickness design

    Pilot-Scale Production of Chito-Oligosaccharides Using an Innovative Recombinant Chitosanase Preparation Approach

    No full text
    For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future

    Pilot-Scale Production of Chito-Oligosaccharides Using an Innovative Recombinant Chitosanase Preparation Approach

    No full text
    For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future

    Spectroscopic study on spontaneously grown silver@ultra-thin cerium oxide nanostructures

    No full text
    Ag@CeO2 nanostructures have been recently reported to show unique catalytic properties but synthetic methods for them are limited. This study investigates microstructural characteristics of Ag@CeO2 nanowires and nanoparticles with a spontaneously-grown ultra-thin ceria shell (∼0.5 nm), which were synthesized on CeO2 substrate without using oxide precursors. Elemental mapping and line scanning by electron energy loss spectroscopy (EELS) suggest that the Ce in the CeO2 substrate dissolved in the molten silver nitrate salt and was repelled to the surface of the Ag nanostructures to form continuous oxide shells during the growth of Ag single-crystals. X-ray absorption near edge structure (XANES) spectra verify that the valence of the Ce ions in the oxide layer was between Ce3+ and Ce4+
    corecore