34 research outputs found

    Effects of Catheterization on Artery Function and Health: When Should Patients Start Exercising Following Their Coronary Intervention?

    Get PDF
    Coronary artery disease (CAD) is a leading cause of death worldwide, and percutaneous transluminal coronary angiography (PTCA) and/or percutaneous coronary intervention (PCI; angioplasty) are commonly used to diagnose and/or treat the obstructed coronaries. Exercise-based rehabilitation is recommended for all CAD patients; however, most guidelines do not specify when exercise training should commence following PTCA and/or PCI. Catheterization can result in arterial dysfunction and acute injury, and given the fact that exercise, particularly at higher intensities, is associated with elevated inflammatory and oxidative stress, endothelial dysfunction and a pro-thrombotic milieu, performing exercise post-PTCA/PCI may transiently elevate the risk of cardiac events. This review aims to summarize extant literature relating to the impacts of coronary interventions on arterial function, including the time-course of recovery and the potential deleterious and/or beneficial impacts of acute versus long-term exercise. The current literature suggests that arterial dysfunction induced by catheterization recovers 4-12 weeks following catheterization. This review proposes that a period of relative arterial vulnerability may exist and exercise during this period may contribute to elevated event susceptibility. We therefore suggest that CAD patients start an exercise training programme between 2 and 4 weeks post-PCI, recognizing that the literature suggest there is a 'grey area' for functional recovery between 2 and 12 weeks post-catheterization. The timing of exercise onset should take into consideration the individual characteristics of patients (age, severity of disease, comorbidities) and the intensity, frequency and duration of the exercise prescription

    Efficacy of AAV serotypes to target Schwann cells after intrathecal and intravenous delivery

    Get PDF
    Diseases of the nervous system; Myelin biology and repair; Peripheral nervous systemEnfermedades del sistema nervioso; Biología y reparación de la mielina; Sistema nervioso periféricoMalalties del sistema nerviós; Biologia i reparació de la mielina; Sistema nerviós perifèricTo optimize gene delivery to myelinating Schwann cells we compared clinically relevant AAV serotypes and injection routes. AAV9 and AAVrh10 vectors expressing either EGFP or the neuropathy-associated gene GJB1/Connexin32 (Cx32) under a myelin specific promoter were injected intrathecally or intravenously in wild type and Gjb1-null mice, respectively. Vector biodistribution in lumbar roots and sciatic nerves was higher in AAVrh10 injected mice while EGFP and Cx32 expression rates and levels were similar between the two serotypes. A gradient of biodistribution away from the injection site was seen with both intrathecal and intravenous delivery, while similar expression rates were achieved despite higher vector amounts injected intravenously. Quantified immune cells in relevant tissues were similar to non-injected littermates. Overall, AAV9 and AAVrh10 efficiently transduce Schwann cells throughout the peripheral nervous system with both clinically relevant routes of administration, although AAV9 and intrathecal injection may offer a more efficient approach for treating demyelinating neuropathies.Generalitat de Catalunya, 2019FI_B2 00061, 2019FI_B2 00061, Fundació la Marató de TV3, 201607.10, Muscular Dystrophy Association, 603003

    AAV9-mediated SH3TC2 gene replacement therapy targeted to Schwann cells for the treatment of CMT4C

    Get PDF
    Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2−/− mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2−/− mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2−/− mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment

    Exercise-induced vasodilation is not impaired following radial artery catheterization in coronary artery disease patients.

    Get PDF
    Diagnosis and treatment for coronary artery disease (CAD) often involves angiography and/or percutaneous coronary intervention. However, the radial artery catheterization required during both procedures may result in acute artery dysfunction/damage. Whilst exercise-based rehabilitation is recommended for CAD patients following catheterization, it is not known if there is a period when exercise may be detrimental due to catheter-induced damage. Animal studies have demonstrated exercise-induced paradoxical vasoconstriction post-catheterization. This study aimed to examine arterial responses to acute exercise following catheterization. Thirty-three CAD patients (65.8±7.3yr, 31.5±6.3kg.m-2, 82%♂) undergoing transradial catheterization were assessed pre- and 1 week post-catheterization. Radial artery (RA) diameter and shear rate were assessed during handgrip exercise (HE), in both the catheterized (CATH) and control (CON) arms. Endothelial function was also assessed via simultaneous bilateral radial flow mediated dilation (FMD) at both time-points. We found that the increase in RA diameter and shear stress in response to HE (P<0.0001) was maintained post-catheterization in both the CATH and CON arms, whereas FMD following catheterization was impaired in the CATH [6.5±3.3% to 4.7±3.5% (P=0.005)] but not in the CON [6.2±2.6% to 6.4±3.5% (P=0.797)] limb. Whilst endothelial dysfunction, assessed by FMD, was apparent 1 week post-catheterization, the ability of the RA to dilate in response to exercise was not impaired. The impact of catheterization and consequent endothelial denudation on vascular dys/function in humans may therefore be stimulus specific and a highly level of redundancy appears to exist that preserves exercise-mediated vasodilator responses

    Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males.

    Get PDF
    Acute exercise can result in temporary decrease in endothelial function, which may represent a transient period of risk. Numerous mechanisms underpin these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aimed to compare the time-course of endothelial responses to two exercise protocols: moderate-intensity-continuous-exercise (MICE) and high-intensity-interval-exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6±3.7y, BMI: 25.6±2.5m2/kg, VO2peak: 38.6±6.5ml/kg/min) completed two randomly assigned exercises; HIIE (10x1min-@-90% heart rate reserve (HRR), 1min passive recovery) or MICE (30min-@-70% HRR) on a cycle ergometer. FMD was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E+) and platelet-derived EV (CD41a+), prior- and 10, 60, and 120min post-exercise. There were similar increases, but different time-courses (P=0.017) in FMD (increased 10min post-HIIE, P0.05). Acute exercise resulted in similar improvements, but different time-course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise

    Impact of catheterization on shear-mediated arterial dilation in healthy young men

    Get PDF
    Purpose; Animal studies have shown that endothelial denudation abolishes vasodilation in response to increased shear stress. Interestingly, shear-mediated dilation has been reported to be reduced, but not abolished, in coronary artery disease (CAD) patients following catheterization. However, it is not known whether this resulted from a priori endothelial dysfunction in this diseased population. In this study, we evaluated shear-mediated dilation following catheterization in healthy young men. Methods: Twenty-six (age: 24.4 ± 3.8 years, BMI: 24.3 ± 2.8 kg m−2, VO2peak: 50.5 ± 8.8 ml/kg/min) healthy males underwent unilateral transradial catheterization. Shear-mediated dilation of both radial arteries was measured using flow-mediated dilation (FMD) pre-, and 7 days post-catheterization. Results: FMD was reduced in the catheterized arm [9.3 ± 4.1% to 4.3 ± 4.1% (P < 0.001)] post-catheterization, whereas no change was observed in the control arm [8.4 ± 3.8% to 7.3 ± 3.8% (P = 0.168)]. FMD was completely abolished in the catheterized arm in five participants. Baseline diameter (P = 0.001) and peak diameter during FMD (P = 0.035) were increased in the catheterized arm 7 days post-catheterization (baseline: 2.3 ± 0.3 to 2.6 ± 0.2 mm, P < 0.001, peak: 2.5 ± 0.3 to 2.7 ± 0.3 mm, P = 0.001), with no change in the control arm (baseline: 2.3 ± 0.3 to 2.3 ± 0.3 mm, P = 0.288, peak: 2.5 ± 0.3 to 2.5 ± 0.3 mm, P = 0.608). Conclusion: This is the first study in young healthy individuals with intact a priori endothelial function to provide evidence of impaired shear-mediated dilation following catheterization. When combined with earlier studies in CAD patients, our data suggest the catheterization impairs artery function in humans

    Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients

    Get PDF
    Purpose: Endothelial dysfunction is an early and integral event in the development of atherosclerosis and coronary artery disease (CAD). Reduced NO bioavailability, oxidative stress, vasoconstriction, inflammation and senescence are all implicated in endothelial dysfunction. However, there are limited data examining associations between these pathways and direct in vivo bioassay measures of endothelial function in CAD patients. This study aimed to examine the relationships between in vivo measures of vascular function and the expression of atherogenic risk-modulating proteins in endothelial cells (ECs) isolated from the radial artery of CAD patients. Methods: Fifty-six patients with established CAD underwent trans-radial catheterization. Prior to catheterization, radial artery vascular function was assessed using a) flow-mediated dilation (FMD), and b) exercise-induced dilation in response to handgrip (HE%). Freshly isolated ECs were obtained from the radial artery during catheterization and protein content of eNOS, NAD(P)H oxidase subunit NOX2, NFκB, ET-1 and the senescence markers p53, p21 and p16 were evaluated alongside nitrotyrosine abundance and eNOS Ser1177 phosphorylation. Results: FMD was positively associated with eNOS Ser1177 phosphorylation (r = 0.290, P = 0.037), and protein content of p21 (r = 0.307, P = 0.027) and p16 (r = 0.426, P = 0.002). No associations were found between FMD and markers of oxidative stress, vasoconstriction or inflammation. In contrast to FMD, HE% was not associated with any of the EC proteins. Conclusion: These data revealed a difference in the regulation of endothelium-dependent vasodilation measured in vivo between patients with CAD compared to previously reported data in subjects without a clinical diagnosis, suggesting that eNOS Ser1177 phosphorylation may be the key to maintain vasodilation in CAD patients

    Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids.

    Get PDF
    Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure

    Elevated shear rate-induced by exercise increases eNOS ser(1177) but not PECAM-1 Tyr(713) phosphorylation in human conduit artery endothelial cells

    Get PDF
    Although evidence demonstrates the fundamental role of shear stress in vascular health, predominantly through the release of nitric oxide (NO), the mechanisms by which endothelial cells (EC)s sense and transduce shear are poorly understood. In cultured ECs tyrosine phosphorylation of PECAM-1 has been shown to activate eNOS in response to shear stress. However, in the human skeletal muscle microcirculation PECAM-1 was not activated in response to exercise or passive leg movement. Given this contradiction, this study aimed to assess the effect of exercise on conduit artery PECAM-1 and eNOS activation in humans. Eleven males were randomised to two groups; 30 min of handgrip exercise (n = 6), or a time-control group (n = 5). Protein content of eNOS and PECAM-1, alongside eNOS Ser1177 and PECAM-1 Tyr713 phosphorylation were assessed in ECs obtained from the radial artery pre- and post-intervention. Handgrip exercise resulted in a 5-fold increase in mean shear rate in the exercise group, with no change in the control group (group*time, P 0.05). eNOS and PECAM-1 protein content were unchanged (group*time, P > 0.05). Our data show that exercise-induced elevations in conduit artery shear rate increase eNOS Ser1177 phosphorylation but not PECAM-1 Tyr713 phosphorylation. This suggests PECAM-1 phosphorylation may not be involved in the vascular response to acute but prolonged elevations in exercise-induced shear rate in conduit arteries of healthy, active men

    AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy

    Get PDF
    Funder: The Republic of Cyprus through the Research and Innovation Foundation Foundation (Project: CULTURE/BR-NE/0416/07)Funder: Wallenberg Scholar and the fluid biomarker measurements in the lab of HZ and AJH were supported by the UK Dementia Research Institute at UCLAbstract: Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X
    corecore