9 research outputs found

    An investigation into the possibility of bluetongue virus transmission by transfer of infected ovine embryos

    Get PDF
    Bluetongue (BT), a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV), can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS) protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 102.88 and 1 x 103.5 respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 103.5. No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo

    An investigation into the possibility of bluetongue virus transmission by transfer of infected ovine embryos

    Get PDF
    Bluetongue (BT), a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV), can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS) protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 10(2.88) and 1 x 10(3.5) respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 10(3.5). No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo

    Shuni Virus as Cause of Neurologic Disease in Horses

    Get PDF
    To determine which agents cause neurologic disease in horses, we conducted reverse transcription PCR on isolates from of a horse with encephalitis and 111 other horses with acute disease. Shuni virus was found in 7 horses, 5 of which had neurologic signs. Testing for lesser known viruses should be considered for horses with unexplained illness

    Outbreaks of avian influenza H6N2 viruses in chickens arose by a reassortment of H6N8 and H9N2 ostrich viruses

    No full text
    The first recorded outbreak of avian influenza (AI) in South African chickens (low pathogenicity H6N2) occurred at Camperdown, KwaZulu/Natal Province (KZN) in June 2002. To determine the source of the outbreak, we defined the phylogenetic relationships between various H6N2 isolates, and the previously unpublished gene sequences of an H6N8 virus isolated in 1998 from ostriches in the Leeu Gamka region (A/Ostrich/South Africa/KK98/98). We demonstrated that two distinct genetic H6N2 lineages (sub-lineages I and II) circulated in the Camperdown area, which later spread to other regions. Sub-lineages I and II shared a recent common H6N2 ancestor, which arose from a reassortment event between two South African ostrich isolates A/Ostrich/South Africa/9508103/95 and (H9N2) /Ostrich/South Africa/KK98/98 (H6N8). Furthermore, the H6N2 sub-lineage I viruses had several molecular genetic markers including a 22-amino acid stalk deletion in the neuraminidase (NA) protein gene, a predicted increased N-glycosylation, and a D144 mutation of the HA protein gene, all of which are associated with the adaptation of AI viruses to chickens. The H6N2 NS1 and PB1 genes shared recent common ancestors with those of contemporary Asian HPAI H5N1 viruses. Our results suggest that ostriches are potential mixing vessels for avian influenza viruses (AIV) outbreak strains and support other reports that H6 viruses are capable of forming stable lineages in chickens.nf201

    Phylogenetic analysis of low-pathogenicity avian influenza H6N2 viruses from chicken outbreaks (2001-2005) suggest that they are reassortants of historic ostrich low-pathogenicity avian influenza H9N2 and H6N8 viruses

    No full text
    Low-pathogenicity (LPAI) and high-pathogenicity (HPAI) avian influenza viruses are periodically isolated from South African ostriches, but during 2002 the first recorded outbreak of LPAI (H6N2) in South African chickens occurred on commercial farms in the Camperdown area of KwaZulu/Natal (KZN) Province. Sequence analysis of all eight genes were performed and phylogenetic analysis was done based on the hemagglutinin and neuraminidasc sequences. Results from phylogenetic analyses indicated that the H6N2 chicken viruses most likely arose from a reassortment between two South African LPAI ostrich isolates: an H9N2 virus isolated in 1995 and an H6N8 virus isolated in 1998. Two cocirculating sublineages of H6N2 viruses were detected, both sharing a recent common ancestor. One of these sublineages was restricted to the KZN province. The neuraminidase gene contained a 22–amino acid deletion in the NA-stalk region, which is associated with adaptation to growth in chickens, whereas the other group, although lacking the NA-stalk deletion, spread to commercial farms in other provinces. The persistence of particular H6N2 types in some regions for at least 2 yr supports reports from Asia and southern California suggesting that H6N2 viruses can form stable lineages in chickens. It is probable that the ostrich H6N8 and H9N2 progenitors of the chicken H6N2 viruses were introduced to ostriches by wild birds. Ostriches, in which AI infections are often subclinical, may serve as mixing vessels for LPAI strains that occasionally spill over into other poultry

    Standardization and validation of an immunoperoxidase assay for the detection of African horse sickness virus in formalin-fixed, paraffin-embedded tissues

    Get PDF
    An immunoperoxidase assay for the detection of African horse sickness virus (AHSV) in formalin-fixed tissues is a valuable tool in the study of the pathogenesis of the disease, as well as a useful addition to existing diagnostic tests when only preserved tissues are available. An assay that uses Hamblin antiserum in a basic avidin–biotin complex detection system was standardized and validated in accordance with the guidelines of the American Association of Veterinary Laboratory Diagnosticians Subcommittee on Standardization of Immunohistochemistry. Using 128 positive cases of African horse sickness confirmed by viral isolation and serotyping and 119 negative cases from countries where the disease has never occurred, diagnostic sensitivity and diagnostic specificity were 100% in the prime target tissues of heart and lung. There was no variation in the ability of the assay to detect all 9 serotypes of AHSV, and there was no cross-reactivity with other orbiviruses in formalin-fixed tissues. The only cross-reactivity observed was in the lungs of 2 negative cases infected with Rhodococcus equi. The assay gave good results on tissues that had been fixed in formalin for up to 365 days. Nonspecific staining was minimal provided that the standard procedures for processing and staining tissues were followed. Good immunohistochemical results were also obtained on samples fixed as long as 24 hr after death. The assay, therefore, provides a robust diagnostic tool for detection of AHSV in formalin-fixed tissues, provided the analysis is done by an experienced pathologist.ab2013 (Author correction

    Identification and partial sequencing of a crocodile poxvirus associated with deeply penetrating skin lesions in farmed Nile crocodiles, Crocodylus niloticus

    Get PDF
    When large numbers of crocodile skins were downgraded because of the presence of small pin pricklike holes, collapsed epidermal cysts were found deep in the dermis of juvenile crocodiles while forming cysts were observed in hatchlings. Histopathology of these forming cysts showed the presence of intracytoplasmic inclusions in proliferating and ballooning epidermal cells. Pox virions were seen in electron microscope preparations made from the scabs of such early lesions. The partial sequencing of virus material from scrapings of these lesions and comparison of it with the published sequence of crocodile poxvirus showed the virus associated with the deep lesions to be closely related, but different. To differentiate between the two forms of crocodile pox infection it is suggested that the previously known form should be called “classical crocodile pox” and the newly discovered form “atypical crocodile pox”. The application of strict hygiene measures brought about a decline in the percentage of downgraded skins

    Antibodies against bovine herpesvirus 4 are highly prevalent in wild African buffaloes throughout eastern and southern Africa

    Full text link
    Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle throughout the world. Interestingly, a survey of wild African buffaloes mainly from the Maasai Mara Game Reserve in Kenya revealed that 94% of the animals tested had anti-BoHV-4 antibodies [Rossiter, P.B., Gumm, I.D., Stagg, D.A., Conrad, PA., Mukolwe, S., Davies, F.G., White, H., 1989. Isolation of bovine herpesvirus-3 from African buffaloes (Syncerus caffer). Res. Vet. Sci. 46, 337-343]. These authors also proposed that the serological antigenic relationship existing between BoHV-4 and alcelaphine herpesvirus I (A1HV-1) could confer to BoHV-4 infected buffaloes a protective immune response against lethal A1HV-1 infection. In the present study, we addressed two questions related to Rossiter et al. paper. Firstly, to investigate the role of the African buffalo as a natural host species of BoHV-4, the seroprevalence of anti-BoHV-4 antibodies was analysed in wild African buffaloes throughout eastern and southern Africa. A total of 400 sera was analysed using two complementary immunofluorescent assays. These analyses revealed that independently of their geographical origin, wild African buffaloes exhibit a seroprevalence of anti-BoHV-4 antibodies higher than 68%. This result is by far above the seroprevalence generally observed in cattle. Our data are discussed in the light of our recent phylogenetic study demonstrating that the BoHV-4 Bo17 gene has been acquired from a recent ancestor of the African buffalo. Secondly, we investigated the humoral antigenic relationship existing between BoHV-4 and A1HV-1. Our results demonstrate that among the antigens expressed in A1HV-1 infected cells, epitope(s) recognised by anti-BoHV-4 antibodies are exclusively nuclear, suggesting that the putative property of BoHV-4 to confer an immune protection against A1HV-1 relies on a cellular rather than on a humoral immune response. (c) 2005 Elsevier B.V. All rights reserved
    corecore