17 research outputs found

    Strong Equivalence of Qualitative Optimization Problems

    Get PDF
    We introduce the framework of qualitative optimization problems (or, simply, optimization problems) to represent preference theories. The formalism uses separate modules to describe the space of outcomes to be compared (the generator) and the preferences on outcomes (the selector). We consider two types of optimization problems. They differ in the way the generator, which we model by a propositional theory, is interpreted: by the standard propositional logic semantics, and by the equilibrium-model (answer-set) semantics. Under the latter interpretation of generators, optimization problems directly generalize answer-set optimization programs proposed previously. We study strong equivalence of optimization problems, which guarantees their interchangeability within any larger context. We characterize several versions of strong equivalence obtained by restricting the class of optimization problems that can be used as extensions and establish the complexity of associated reasoning tasks. Understanding strong equivalence is essential for modular representation of optimization problems and rewriting techniques to simplify them without changing their inherent properties

    On Abstract Modular Inference Systems and Solvers

    Get PDF
    Integrating diverse formalisms into modular knowledge representation systems offers increased expressivity, modeling convenience, and computational benefits. We introduce the concepts of abstract inference modules and abstract modular inference systems to study general principles behind the design and analysis of model generating programs, or solvers, for integrated multi-logic systems. We show how modules and modular systems give rise to transition graphs, which are a natural and convenient representation of solvers, an idea pioneered by the SAT community. These graphs lend themselves well to extensions that capture such important solver design features as learning. In the paper, we consider two flavors of learning for modular formalisms, local and global. We illustrate our approach by showing how it applies to answer set programming, propositional logic, multi-logic systems based on these two formalisms and, more generally, to satisfiability modulo theories

    Abstract Modular Inference Systems and Solvers

    Get PDF
    Integrating diverse formalisms into modular knowledge representation systems offers increased expressivity, modeling convenience and computational benefits. We introduce the concepts of abstract inference modules and abstract modular inference systems to study general principles behind the design and analysis of model-generating programs, or solvers, for integrated multilogic systems.We show how modules and modular systems give rise to transition graphs, which are a natural and convenient representation of solvers, an idea pioneered by the SAT community. We illustrate our approach by showing how it applies to answer-set programming and propositional logic, and to multi-logic systems based on these two formalisms

    An Abstract View on Modularity in Knowledge Representation

    Get PDF
    Modularity is an essential aspect of knowledge representation and reasoning theory and practice. It has received substantial attention. We introduce model-based modular systems, an abstract framework for modular knowledge representation formalisms, similar in scope to multi-context systems but employing a simpler information-flow mechanism. We establish the precise relationship between the two frameworks, showing that they can simulate each other. We demonstrate that recently introduced modular knowledge representation formalisms integrating logic programming with satisfiability and, more generally, with constraint satisfaction can be cast as modular systems in our sense. These results show that our formalism offers a simple unifying framework for studies of modularity in knowledge representation

    Weighted-Sequence Problem: ASP vs CASP and Declarative vs Problem-Oriented Solving

    Get PDF
    Search problems with large variable domains pose a challenge to current answer-set programming (ASP) systems as large variable domains make grounding take a long time, and lead to large ground theories that may make solving infeasible. To circumvent the “grounding bottleneck” researchers proposed to integrate constraint solving techniques with ASP in an approach called constraint ASP (CASP). In the paper, we evaluate an ASP system CLINGO and a CASP system CLINGCON on a handcrafted problem involving large integer domains that is patterned after the database task of determining the optimal join order. We find that search methods used by CLINGO are superior to those used by CLINGCON, yet the latter system, not hampered by grounding, scales up better. The paper provides evidence that gains in solver technology can be obtained by further research on integrating ASP and CSP technologies

    Abstract Modular Systems and Solvers

    Get PDF
    Abstract. Integrating diverse formalisms into modular knowledge representation systems offers increased expressivity, modeling convenience and computational benefits. We introduce concepts of abstract modules and abstract modular systems to study general principles behind the design and analysis of modelfinding programs, or solvers, for integrated heterogeneous multi-logic systems. We show how abstract modules and abstract modular systems give rise to transition systems, which are a natural and convenient representation of solvers pioneered by the SAT community. We illustrate our approach by showing how it applies to answer set programming and propositional logic, and to multi-logic systems based on these two formalisms.
    corecore