58 research outputs found

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    Novel Automated Blood Separations Validate Whole Cell Biomarkers

    Get PDF
    Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples.To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes.Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials

    Dealing with heterogeneity of treatment effects: is the literature up to the challenge?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses.</p> <p>Methods</p> <p>Articles were selected through a probability sample of randomized controlled trials (RCTs) published in <it>Annals of Internal Medicine</it>, <it>BMJ</it>, <it>JAMA</it>, <it>The Lancet</it>, and <it>NEJM </it>during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting.</p> <p>Results</p> <p>319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively).</p> <p>Conclusion</p> <p>HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.</p

    Therapygenetics: using genetic markers to predict response to psychological treatment for mood and anxiety disorders

    Get PDF
    Considerable variation is evident in response to psychological therapies for mood and anxiety disorders. Genetic factors alongside environmental variables and gene-environment interactions are implicated in the etiology of these disorders and it is plausible that these same factors may also be important in predicting individual differences in response to psychological treatment. In this article, we review the evidence that genetic variation influences psychological treatment outcomes with a primary focus on mood and anxiety disorders. Unlike most past work, which has considered prediction of response to pharmacotherapy, this article reviews recent work in the field of therapygenetics, namely the role of genes in predicting psychological treatment response. As this is a field in its infancy, methodological recommendations are made and opportunities for future research are identified

    PIPELINEs: Creating Comparable Clinical Knowledge Efficiently by Linking Trial Platforms.

    No full text
    Adaptive, seamless, multisponsor, multitherapy clinical trial designs executed as large scale platforms, could create superior evidence more efficiently than single-sponsor, single-drug trials. These trial PIPELINEs also could diminish barriers to trial participation, increase the representation of real-world populations, and create systematic evidence development for learning throughout a therapeutic life cycle, to continually refine its use. Comparable evidence could arise from multiarm design, shared comparator arms, and standardized endpoints-aiding sponsors in demonstrating the distinct value of their innovative medicines; facilitating providers and patients in selecting the most appropriate treatments; assisting regulators in efficacy and safety determinations; helping payers make coverage and reimbursement decisions; and spurring scientists with translational insights. Reduced trial times and costs could enable more indications, reduced development cycle times, and improved system financial sustainability. Challenges to overcome range from statistical to operational to collaborative governance and data exchange
    corecore