480 research outputs found

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4

    Superfluidity in the interior-gap states

    Full text link
    We investigate superfluidity in the interior-gap states proposed by Liu and Wilczek. At weak coupling, we find the {\em gapless} interior-gap state unstable in physically accessible regimes of the parameter space, where the superfluid density is shown to be always negative. We therefore conclude that the spatially-uniform interior-gap phase is extremely unstable unless it is fully gapped; in this case, however, the state is rather similar to conventional BCS states.Comment: To appear in Physical Review

    Two-species magneto-optical trap with 40K and 87Rb

    Full text link
    We trap and cool a gas composed of 40K and 87Rb, using a two-species magneto-optical trap (MOT). This trap represents the first step towards cooling the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is derived from laser diodes and amplified with a single high power semiconductor amplifier chip. The four-color laser system is described, and the single-species and two-species MOTs are characterized. Atom numbers of 1x10^7 40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap loss due to collisions between species is presented and future prospects for the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review

    Light guiding light: Nonlinear refraction in rubidium vapor

    Get PDF
    Recently there has been experimental and theoretical interest in cross-dispersion effects in rubidium vapor, which allows one beam of light to be guided by another. We present theoretical results which account for the complications created by the D line hyperfine structure of rubidium as well as the presence of the two major isotopes of rubidium. This allows the complex frequency dependence of the effects observed in our experiments to be understood and lays the foundation for future studies of nonlinear propagation

    Effects of the trapping potential on a superfluid atomic Fermi Gas

    Full text link
    We examine a dilute two-component atomic Fermi gas trapped in a harmonic potential in the superfluid phase. For experimentally realistic parameters, the trapping potential is shown to have crucial influence on various properties of the gas. Using an effective hamiltonian, analytical results for the critical temperature, the temperature dependence of the superfluid gap, and the energy of the lowest collective modes are derived. These results are shown to agree well with numerical calculations. We furthermore discuss in more detail a previous proposed method to experimentally observe the superfluid transition by looking at the collective mode spectrum. Our results are aimed at the present experimental effort to observe a superfluid phase transition in a trapped atomic Fermi gas.Comment: 2. revised version. Minor mistakes in equation references corrected. To appear in Phys. Rev.

    Spectroscopic Temperature Determination of Degenerate Fermi Gases

    Full text link
    We suggest a simple method for measuring the temperature of ultra-cold gases made of fermions. We show that by using a two-photon Raman probe, it is possible to obtain lineshapes which reveal properties of the degenerate sample, notably its temperature TT. The proposed method could be used with identical fermions in different hyperfine states interacting via s-wave scattering or identical fermions in the same hyperfine state via p-wave scattering. We illustrate the applicability of the method in realistic conditions for 6^6Li prepared in two different hyperfine states. We find that temperatures down to 0.05 TFT_{F} can be determined by this {\it in-situ} method.Comment: 7 pages, 4 figures, Revtex

    Degenerate fermion gas heating by hole creation

    Full text link
    Loss processes that remove particles from an atom trap leave holes behind in the single particle distribution if the trapped gas is a degenerate fermion system. The appearance of holes increases the temperature and we show that the heating is (i) significant if the initial temperature is well below the Fermi temperature TFT_{F}, and (ii) increases the temperature to T≥TF/4T \geq T_{F}/4 after half of the system's lifetime, regardless of the initial temperature. The hole heating has important consequences for the prospect of observing Cooper-pairing in atom traps.Comment: to be published in PR

    Spin Excitations in a Fermi Gas of Atoms

    Full text link
    We have experimentally investigated a spin excitation in a quantum degenerate Fermi gas of atoms. In the hydrodynamic regime the damping time of the collective excitation is used to probe the quantum behavior of the gas. At temperatures below the Fermi temperature we measure up to a factor of 2 reduction in the excitation damping time. In addition we observe a strong excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure

    Instability Heating of Sympathetically-Cooled Ions in a Linear Paul Trap

    Get PDF
    Sympathetic laser cooling of ions stored within a linear-geometry, radio frequency, electric-quadrupole trap has been investigated using computational and theoretical techniques. The simulation, which allows 5 sample ions to interact with 35 laser-cooled atomic ions, revealed an instability heating mechanism, which can prevent ions below a certain critical mass from being sympathetically cooled. This critical mass can however be varied by changing the trapping field parameters thus allowing ions with a very large range of masses to be sympathetically cooled using a single ion species. A theoretical explanation of this instability heating mechanism is presented which predicts that the cooling-heating boundary in trapping parameter space is a line of constant quq_u (ion trap stability coefficient), a result supported by the computational results. The threshold value of quq_u depends on the masses of the interacting ions. A functional form of this dependence is given
    • …
    corecore