399 research outputs found

    Boson induced s-wave pairing in dilute boson-fermion mixtures

    Full text link
    We show that in dilute boson-fermion mixtures with fermions in two internal states, even when the bare fermion-fermion interaction is repulsive, the exchange of density fluctuations of the Bose condensate may lead to an effective fermion-fermion attraction, and thus to a Cooper instability in the s-wave channel. We give an analytical method to derive the associated TcT_c in the limit where the phonon branch of the Bogoliubov excitation spectrum of the bosons is important. We find a TcT_c of the same order as for a pure Fermi gas with bare attraction.Comment: 12 pages, no figure

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4

    Manipulating the critical temperature for the superfluid phase transition in trapped atomic Fermi gases

    Full text link
    We examine the effect of the trapping potential on the critical temperature, TCT_C, for the BCS transition to a superfluid state in trapped atomic gases of fermions. TCT_C for an arbitrary power law trap is calculated in the Thomas-Fermi approximation. For anharmonic traps, TCT_C can be increased by several orders of magnitude in comparison to a harmonic trap. Our theoretical results indicate that, in practice, one could manipulate the critical temperature for the BCS phase transition by shaping the traps confining the atomic Fermi gases.Comment: 4 page

    Resonant control of elastic collisions in an optically trapped Fermi gas of atoms

    Full text link
    We have loaded an ultracold gas of fermionic atoms into a far off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure

    Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential

    Full text link
    Spin asymmetry of the ground states is studied for the trapped spin-degenerate (two-component) gases of the fermionic atoms with the repulsive interaction between different components, and, for large particle number, the asymmetric (collective ferromagnetic) states are shown to be stable because it can be energetically favorable to increase the fermi energy of one component rather than the increase of the interaction energy between up-down components. We formulate the Thomas-Fermi equations and show the algebraic methods to solve them. From the Thomas-Fermi solutions, we find three kinds of ground states in finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium) and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin-asymmetries are shown to occur in the central regions of the trapped gas, and grows up with increasing particle number. Based on the obtained results, we discuss the experimental conditions and current difficulties to realize the ferromagnetic states of the trapped atom gas, which should be overcome.Comment: submit to PR

    Degenerate fermion gas heating by hole creation

    Full text link
    Loss processes that remove particles from an atom trap leave holes behind in the single particle distribution if the trapped gas is a degenerate fermion system. The appearance of holes increases the temperature and we show that the heating is (i) significant if the initial temperature is well below the Fermi temperature TFT_{F}, and (ii) increases the temperature to T≥TF/4T \geq T_{F}/4 after half of the system's lifetime, regardless of the initial temperature. The hole heating has important consequences for the prospect of observing Cooper-pairing in atom traps.Comment: to be published in PR

    Resonance and frequency-locking phenomena in spatially extended phytoplankton-zooplankton system with additive noise and periodic forces

    Full text link
    In this paper, we present a spatial version of phytoplankton-zooplankton model that includes some important factors such as external periodic forces, noise, and diffusion processes. The spatially extended phytoplankton-zooplankton system is from the original study by Scheffer [M Scheffer, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos \textbf{62} (1991) 271-282]. Our results show that the spatially extended system exhibit a resonant patterns and frequency-locking phenomena. The system also shows that the noise and the external periodic forces play a constructive role in the Scheffer's model: first, the noise can enhance the oscillation of phytoplankton species' density and format a large clusters in the space when the noise intensity is within certain interval. Second, the external periodic forces can induce 4:1 and 1:1 frequency-locking and spatially homogeneous oscillation phenomena to appear. Finally, the resonant patterns are observed in the system when the spatial noises and external periodic forces are both turned on. Moreover, we found that the 4:1 frequency-locking transform into 1:1 frequency-locking when the noise intensity increased. In addition to elucidating our results outside the domain of Turing instability, we provide further analysis of Turing linear stability with the help of the numerical calculation by using the Maple software. Significantly, oscillations are enhanced in the system when the noise term presents. These results indicate that the oceanic plankton bloom may partly due to interplay between the stochastic factors and external forces instead of deterministic factors. These results also may help us to understand the effects arising from undeniable subject to random fluctuations in oceanic plankton bloom.Comment: Some typos errors are proof, and some strong relate references are adde

    Interaction between vortices in models with two order parameters

    Get PDF
    The interaction energy and force between widely separated strings is analyzed in a field theory having applications to superconducting cosmic strings, the SO(5) model of high-temperature superconductivity, and solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum (giving rise to strings), the other of which is unbroken in the vacuum but which could nonetheless be broken in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This effect is important if the length scale of this second order parameter is longer than that of the other fields in the problem.Comment: 11 pages, 3 figures. Minor changes in the text. Accepted for publication in Phys. Rev.

    Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate

    Full text link
    Photoassociation and the Feshbach resonance are, in principle, feasible means for creating a molecular Bose-Einstein condensate from an already-quantum-degenerate gas of atoms; however, mean-field shifts and irreversible decay place practical constraints on the efficient delivery of stable molecules using either mechanism alone. We therefore propose Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and optical methods, as a viable means to collectively convert degenerate atoms into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme, and added discussion; transferred to PR

    Two-species magneto-optical trap with 40K and 87Rb

    Full text link
    We trap and cool a gas composed of 40K and 87Rb, using a two-species magneto-optical trap (MOT). This trap represents the first step towards cooling the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is derived from laser diodes and amplified with a single high power semiconductor amplifier chip. The four-color laser system is described, and the single-species and two-species MOTs are characterized. Atom numbers of 1x10^7 40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap loss due to collisions between species is presented and future prospects for the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
    • …
    corecore