66 research outputs found

    VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning.

    Get PDF
    In this study, we introduce an ensemble selection method for deep ensemble systems called VEGAS. The deep ensemble models include multiple layers of the ensemble of classifiers (EoC). At each layer, we train the EoC and generates training data for the next layer by concatenating the predictions for training observations and the original training data. The predictions of the classifiers in the last layer are combined by a combining method to obtain the final collaborated prediction. We further improve the prediction accuracy of a deep ensemble model by searching for its optimal configuration, i.e., the optimal set of classifiers in each layer. The optimal configuration is obtained using the Variable-Length Genetic Algorithm (VLGA) to maximize the prediction accuracy of the deep ensemble model on the validation set. We developed three operators of VLGA: roulette wheel selection for breeding, a chunk-based crossover based on the number of classifiers to generate new offsprings, and multiple random points-based mutation on each offspring. The experiments on 20 datasets show that VEGAS outperforms selected benchmark algorithms, including two well-known ensemble methods (Random Forest and XgBoost) and three deep learning methods (Multiple Layer Perceptron, gcForest, and MULES)

    Ensemble learning based on classifier prediction confidence and comprehensive learning particle swarm optimisation for medical image segmentation.

    Get PDF
    Segmentation, a process of partitioning an image into multiple segments to locate objects and boundaries, is considered one of the most essential medical imaging process. In recent years, Deep Neural Networks (DNN) have achieved many notable successes in medical image analysis, including image segmentation. Due to the fact that medical imaging applications require robust, reliable results, it is necessary to devise effective DNN models for medical applications. One solution is to combine multiple DNN models in an ensemble system to obtain better results than using each single DNN model. Ensemble learning is a popular machine learning technique in which multiple models are combined to improve the final results and has been widely used in medical image analysis. In this paper, we propose to measure the confidence in the prediction of each model in the ensemble system and then use an associate threshold to determine whether the confidence is acceptable or not. A segmentation model is selected based on the comparison between the confidence and its associated threshold. The optimal threshold for each segmentation model is found by using Comprehensive Learning Particle Swarm Optimisation (CLPSO), a swarm intelligence algorithm. The Dice coefficient, a popular performance metric for image segmentation, is used as the fitness criteria. The experimental results on three medical image segmentation datasets confirm that our ensemble achieves better results compared to some well-known segmentation models

    A Target Threat Assessment Method for Application in Air Defense Command and Control Systems

    Get PDF
    Introduction. This paper presents a solution for threat assessment of air targets using the fuzzy logic inference method. The approach is based on the Sugeno fuzzy model, which has multiple inputs representing target trajectory parameters and a single output representing the target threat value. A set of IF–THEN fuzzy inference rules, utilizing the AND operator, is developed to assess the input information.Aim. To develop and test an algorithm model to calculate the threat value of an air target for use in real-time automated command and control systems.Materials and methods. An algorithm model was developed using a fuzzy model to calculate the threat value of a target. The model is presented in the form of a flowchart supported by a detailed stepwise implementation process. The accuracy of the proposed algorithm was evaluated using the available toolkit in MATLAB. Additionally, a BATE software testbed was developed to assess the applicability of the algorithm model in a real-time automated command and control system.Results. The efficiency of the proposed fuzzy model was evaluated by its simulation and testing using MATLAB tools on a set of 10 target trajectories with different parameters. Additionally, the BATE software was utilized to test the model under various air defense scenarios. The proposed fuzzy model was found to be capable of efficiently computing the threat value of each target with respect to the protected object.Conclusion. The proposed fuzzy model can be applied when developing tactical supporting software modules for real-time air defense command and control systems.Introduction. This paper presents a solution for threat assessment of air targets using the fuzzy logic inference method. The approach is based on the Sugeno fuzzy model, which has multiple inputs representing target trajectory parameters and a single output representing the target threat value. A set of IF–THEN fuzzy inference rules, utilizing the AND operator, is developed to assess the input information.Aim. To develop and test an algorithm model to calculate the threat value of an air target for use in real-time automated command and control systems.Materials and methods. An algorithm model was developed using a fuzzy model to calculate the threat value of a target. The model is presented in the form of a flowchart supported by a detailed stepwise implementation process. The accuracy of the proposed algorithm was evaluated using the available toolkit in MATLAB. Additionally, a BATE software testbed was developed to assess the applicability of the algorithm model in a real-time automated command and control system.Results. The efficiency of the proposed fuzzy model was evaluated by its simulation and testing using MATLAB tools on a set of 10 target trajectories with different parameters. Additionally, the BATE software was utilized to test the model under various air defense scenarios. The proposed fuzzy model was found to be capable of efficiently computing the threat value of each target with respect to the protected object.Conclusion. The proposed fuzzy model can be applied when developing tactical supporting software modules for real-time air defense command and control systems

    A weighted multiple classifier framework based on random projection.

    Get PDF
    In this paper, we propose a weighted multiple classifier framework based on random projections. Similar to the mechanism of other homogeneous ensemble methods, the base classifiers in our approach are obtained by a learning algorithm on different training sets generated by projecting the original up-space training set to lower dimensional down-spaces. We then apply a Least SquarE−based method to weigh the outputs of the base classifiers so that the contribution of each classifier to the final combined prediction is different. We choose Decision Tree as the learning algorithm in the proposed framework and conduct experiments on a number of real and synthetic datasets. The experimental results indicate that our framework is better than many of the benchmark algorithms, including three homogeneous ensemble methods (Bagging, RotBoost, and Random Subspace), several well-known algorithms (Decision Tree, Random Neural Network, Linear Discriminative Analysis, K Nearest Neighbor, L2-loss Linear Support Vector Machine, and Discriminative Restricted Boltzmann Machine), and random projection-based ensembles with fixed combining rules with regard to both classification error rates and F1 scores

    Two layer ensemble of deep learning models for medical image segmentation.

    Get PDF
    In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the performance in the segmentation task, we develop an ensemble system which combines various deep learning architectures. We propose a two-layer ensemble of deep learning models for the segmentation of medical images. The prediction for each training image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of the ensemble. The prediction of the second layer is then combined by using a weights-based scheme in which each model contributes differently to the combined result. The weights are found by solving linear regression problems. Experiments conducted on two popular medical datasets namely CAMUS and Kvasir-SEG show that the proposed method achieves better results concerning two performance metrics (Dice Coefficient and Hausdorff distance) compared to some well-known benchmark algorithms

    Two-layer ensemble of deep learning models for medical image segmentation. [Article]

    Get PDF
    One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation algorithms can potentially assist physicians with more effective imaging-based diagnoses. However, since it is difficult to acquire high-quality ground truths for medical images and DNN hyperparameters require significant manual tuning, the results by DNN-based medical models might be limited. A potential solution is to combine multiple DNN models using ensemble learning. We propose a two-layer ensemble of deep learning models in which the prediction of each training image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of the ensemble. The prediction of the second layer is then combined by using a weight-based scheme which is found by solving linear regression problems. To the best of our knowledge, our paper is the first work which proposes a two-layer ensemble of deep learning models with an augmented data technique in medical image segmentation. Experiments conducted on five different medical image datasets for diverse segmentation tasks show that proposed method achieves better results in terms of several performance metrics compared to some well-known benchmark algorithms. Our proposed two-layer ensemble of deep learning models for segmentation of medical images shows effectiveness compared to several benchmark algorithms. The research can be expanded in several directions like image classification

    Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation.

    Get PDF
    In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorithms are required to be reliable, robust, and accurate for clinical applications which can be difficult to achieve for some single deep learning methods. In this study, we introduce an ensemble of classifiers for semantic segmentation of medical images. The ensemble of classifiers here is a set of various deep learning-based classifiers, aiming to achieve better performance than using a single classifier. We propose a weighted ensemble method in which the weighted sum of segmentation outputs by classifiers is used to choose the final segmentation decision. We use a swarm intelligence algorithm namely Comprehensive Learning Particle Swarm Optimization to optimize the combining weights. Dice coefficient, a popular performance metric for image segmentation, is used as the fitness criteria. Experiments conducted on some medical datasets of the CAMUS competition on cardiographic image segmentation show that our method achieves better results than both the constituent segmentation models and the reported model of the CAMUS competition

    Two layer Ensemble of Deep Learning Models for Medical Image Segmentation

    Get PDF
    In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the performance in the segmentation task, we develop an ensemble system which combines various deep learning architectures. We propose a two-layer ensemble of deep learning models for the segmentation of medical images. The prediction for each training image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of the ensemble. The prediction of the second layer is then combined by using a weights-based scheme in which each model contributes differently to the combined result. The weights are found by solving linear regression problems. Experiments conducted on two popular medical datasets namely CAMUS and Kvasir-SEG show that the proposed method achieves better results concerning two performance metrics (Dice Coefficient and Hausdorff distance) compared to some well-known benchmark algorithms.Comment: 8 pages, 4 figure

    Ensemble of deep learning models with surrogate-based optimization for medical image segmentation.

    Get PDF
    Deep Neural Networks (DNNs) have created a breakthrough in medical image analysis in recent years. Because clinical applications of automated medical analysis are required to be reliable, robust and accurate, it is necessary to devise effective DNNs based models for medical applications. In this paper, we propose an ensemble framework of DNNs for the problem of medical image segmentation with a note that combining multiple models can obtain better results compared to each constituent one. We introduce an effective combining strategy for individual segmentation models based on swarm intelligence, which is a family of optimization algorithms inspired by biological processes. The problem of expensive computational time of the optimizer during the objective function evaluation is relieved by using a surrogate-based method. We train a surrogate on the objective function information of some populations and then use it to predict the objective values of each candidate in the subsequent populations. Experiments run on a number of public datasets indicate that our framework achieves competitive results within reasonable computation time

    A weighted ensemble of regression methods for gross error identification problem.

    Get PDF
    In this study, we proposed a new ensemble method to predict the magnitude of gross errors (GEs) on measurement data obtained from the hydrocarbon and stream processing industries. Our proposed model consists of an ensemble of regressors (EoR) obtained by training different regression algorithms on the training data of measurements and their associated GEs. The predictions of the regressors are aggregated using a weighted combining method to obtain the final GE magnitude prediction. In order to search for optimal weights for combining, we modelled the search problem as an optimisation problem by minimising the difference between GE predictions and corresponding ground truths. We used Genetic Algorithm (GA) to search for the optimal weights associated with each regressor. The experiments were conducted on synthetic measurement data generated from 4 popular systems from the literature. We first conducted experiments in comparing the performances of the proposed ensemble using GA and Particle Swarm Optimisation (PSO), nature-based optimisation algorithms to search for combining weights to show the better performance of the proposed ensemble with GA. We then compared the performance of the proposed ensemble to those of two well-known weighted ensemble methods (Least Square and BEM) and two ensemble methods for regression problems (Random Forest and Gradient Boosting). The experimental results showed that although the proposed ensemble took higher computational time for the training process than those benchmark algorithms, it performed better than them on all experimental datasets
    corecore